Nav: Home

Quantum sensor breakthrough using naturally occurring vibrations in artificial atoms

July 10, 2019

A team of scientists, led by the University of Bristol, have discovered a new method that could be used to build quantum sensors with ultra-high precision.

When individual atoms emit light, they do so in discrete packets called photons.

When this light is measured, this discrete or 'granular' nature leads to especially low fluctuations in its brightness, as two or more photons are never emitted at the same time.

This property is particularly useful in developing future quantum technologies, where low fluctuations are key, and has led to a surge of interest in engineered systems that act like atoms when they emit light, but whose properties are more easily tailored.

These 'artificial atoms' as they are known, are typically made from solid materials, and are in fact much larger objects, in which the presence of vibrations is unavoidable, and usually considered to be detrimental.

However, a collaborative team, led by the University of Bristol, has now established that these naturally occurring vibrations in artificial atoms can surprisingly lead to an even greater suppression of fluctuations in brightness than that present in natural atomic systems.

The authors, which include academics from the universities of Sheffield and Manchester, show that these low fluctuations could be used to build quantum sensors that are inherently more accurate than those possible without vibrations.

Their findings are published today in the journal Nature Communications.

Dr Dara McCutcheon, principal investigator of the research and Lecturer in Quantum Engineering from the University of Bristol's School of Physics said: "The implications of this research are quite far reaching.

"Usually one always thinks of the vibrations present in these relatively large artificial atoms as being detrimental to the light they emit, as typically the vibrations jostle the energy levels, with the resulting fluctuations imprinted onto the emitted photons.

"What's happening here though, is that at low temperatures the vibrational environment acts to cool the system - in a sense freezing the energy levels, and in turn suppressing fluctuations on the emitted photons."

This work points towards a new vision for these artificial atoms, in which their solid-state nature is actually put to good use to produce light that couldn't be made using natural atomic systems.

It also opens the door to a new set of applications which use artificial atoms for quantum enhanced sensing, ranging from small scale magnetometry that could be used to measure signals in the brain, all the way up to full-scale gravitational wave detection revealing cosmic processes at the centre of galaxies.

University of Bristol

Related Atoms Articles:

2000 atoms in two places at once
The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna.
Single atoms as catalysts
Only the outermost layer of a catalyst can play a role in chemical reactions.
How do atoms vibrate in graphene nanostructures?
Researchers from the University of Vienna, the Advanced Institute of Science and Technology in Japan, the company JEOL and La Sapienza University in Rome have developed a method capable to measure all phonons existing in a nanostructured material.
Targeting individual atoms
In recent decades, NMR spectroscopy has made it possible to capture the spatial structure of chemical and biochemical molecules.
Manipulating atoms one at a time with an electron beam
Researchers at MIT and elsewhere have found a way to manipulate the positions of individual atoms on a graphene sheet, which could be a first step to new quantum computing and sensing devices.
More Atoms News and Atoms Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...