Unravelling the 3-dimensional genomic structure of male germ cells

July 10, 2019

The code of life (genome) is not just a linear sequence of letters, but is also folded (compartmentalised) into a specifically tailored chromatin structure within the cell nuclei. This three-dimensional genomic structure is fundamental, given that it determines which genes "turn on" and which are "turned off" in each cell types.

A new study led by scientists from the UAB and the CNAG-CRG and published in Cell Reports reveals the three-dimensional genomic structure of male germ cells. The study, carried out on mice, shows that this structure is extremely dynamic during the formation of germ cells (gamete precursor cells). Moreover, the study revealed a fine-tuned balance between chromatin remodelling, architectural proteins such as cohesins and gene expression during this process.

All sexually reproducing organisms form haploid gametes (oocytes and sperm) - each cell type carrying only one copy of each chromosome - through two consecutive cell divisions preceded by one round of genome replication. This process is known as meiosis and implies that the genome must be packaged and unpackaged in a precise and highly regulated manner.

"Our work shows the dynamics of chromatin remodelling during the formation of male gametes, by comparing changes in chromatin folding and gene transcription at different moments throughout male meiosis", says coordinator of the study Aurora Ruiz-Herrera, researcher at the Department of Cell Biology, Physiology and Immunology of the Institute of Biotechnology and Biomedicine (IBB) at the UAB, where she leads the research group in Animal Genomics. "We have thus demonstrated the existence of different degrees of genome folding and how these different levels of genome organization are related to structural proteins such as cohesins and gene expression. The results will pave the way for new investigations into the molecular mechanisms regulating these changes."

"This study has been possible only thanks to the combination of complementary techniques in biology such as molecular genetics, microscope imaging and computer simulations. It truly is a multidisciplinary project", explains Marc A. Marti-Renom, ICREA researcher and head of the Structural Genomics Group at the CNAG-CRG and co-leader of the study.

The project represents a significant advance in the study of the mechanisms generating and regulating the 3D structure and function of the genome during the formation of gametes. Determining these mechanisms is fundamental, given that the deregulation of this process can lead to diseases such as infertility and chromosome alterations like trisomy 21.

According to scientists, the research also represents an example of the importance of synergy among specialists from different fields such as molecular and cell biology, genomics and bioinformatics in advancing in our knowledge of the regulation and structure of the genome. Participating in the study were seven research teams, including the UAB, the CNAG-CRG, the CSIC-University of Salamanca, the Sequentia Biotech and the University of New South Wales in Sydney.
The study has received funding from the Ministry for Economics, Industry and Competitiveness, the Government of Catalonia (AGAUR), the Institute of Health Carlos III, the Government of Castilla y León, the European Research Council (ERC) and the Horizon 2020 Programme.

Original article: C. Vara, A. Paytuví-Gallart, I. Cuartero et al. "Three-Dimensional Genomic Structure and Cohesin Occupancy Correlate with Transcriptional Activity during Spermatogenesis". Cell Reports 28, 1-16 (2019). DOI: 10.1016/j.celrep.2019.06.037

Universitat Autonoma de Barcelona

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.