Mussels are inspiring new technology that could help purify water and clean up oil spills

July 10, 2019

Mussels are notorious maritime stowaways known for damaging the hulls of boats, but these same adhesive properties have widespread engineering applications, scientists in China and the United states write in review published July 10 in the journal Matter. They suggest that the chemistry of mussel threads is inspiring engineering innovations that address a wide range of problems, from cleaning up oil spills to treating contaminated water.

Mussels withstand powerful currents and forceful waves by attaching themselves to rocks using clusters of thin, surprisingly hardy byssus threads. These threads owe their adhesive power to an amino acid group called dihydroxyphenylalanine (DOPA), which clings to the surface by performing a series of molecular gymnastics, including hydrogen bonds and hydrophobic and electrostatic interactions.

Scientists have found that DOPA can adhere to all sorts of solid substrates through these interactions--and so can dopamine, a molecule with a similar structure to DOPA. Research suggesting that dopamine can form a universal coating on a wide range of substrates spurred the growth of mussel-inspired chemistry as a powerful new tool for material surface engineering and environmental science.

"Mussels are broadly regarded as a nuisance in marine industries because they will colonize submerged surfaces," says Hao-Cheng Yang a researcher at the School of Chemical Engineering and Technology at Sun Yat-sen University in China. "But from another point of view, the robust attachment of mussels on substrates under water has inspired a biomimetic strategy to realize strong adhesion between materials in water."

A variety of mussel-inspired innovations are already underway. A group of researchers in China has developed a universal red blood cell, which can be accepted by individuals of every blood type, that works by using mussel-inspired coatings to shelter the cell from detection by the body's immune system (and therefore preventing the destructive immune response that would result).

Other research has succeeded in developing superior materials for separating oil and water, which could help to mitigate environmental damage to marine environments after oil spills. Unlike some previously developed materials, researchers believe these mussel-driven innovations may be suitable for large-scale production. Mussels have also inspired advancement in water purification technology. Innovative materials capable of removing heavy metals, organic pollutants, and pathogens from wastewater are being developed from polymerized dopamine, which easily binds to these contaminants or to other materials with such capture properties.

However, although the binding properties of mussels have inspired a variety of recent research, challenges still must be overcome before they can be applied in the real world. Scientists are still working to fully understand the structure-property relationships of mussel-inspired chemicals such as polydopamine and to understand the complex web of interactions between amino acids that influence their adhesive properties.

"Despite simplicity and effectiveness, there are still some inherent limitations," says Yang. "Alkaline conditions are usually needed to realize the polymerization of dopamine, so it cannot be applied to materials that are unstable under alkaline conditions. Moreover, the deposition of PDA is a time-consuming process--it takes tens of hours to form a uniform coating on most material surfaces."

Some researchers hope to overcome these challenges by finding low-cost, stable, and safe substitutes to polydopamine, such as polyphenols.
-end-
This work was also supported by the National Key Research and Development Program of China. The National Natural Science Foundation of China, the Nature Science Foundation of the Jiangxi Province, and the State Key Laboratory of Chemical Resource Engineering. Work at Argonne National Laboratory was supported as part of the Advanced Materials for Energy-Water Systems Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences.

Matter, Wang and Yang et al.: "Mussel-Inspired Surface Engineering for Water-Remediation Materials" https://www.cell.com/matter/fulltext/S2590-2385(19)30027-X

Matter (@Matter_CP), published by Cell Press, is a new journal for multi-disciplinary, transformative materials sciences research. Papers explore scientific advancements across the spectrum of materials development--from fundamentals to application, from nano to macro. Visit: https://www.cell.com/matter. To receive Cell Press media alerts, please contact press@cell.com.

Cell Press

Related Dopamine Articles from Brightsurf:

Dopamine surge reveals how even for mice, 'there's no place like home'
''There's no place like home,'' has its roots deep in the brain.

New dopamine sensors could help unlock the mysteries of brain chemistry
In 2018, Tian Lab at UC Davis Health developed dLight1, a single fluorescent protein-based biosensor.

Highly sensitive dopamine detector uses 2D materials
A supersensitive dopamine detector can help in the early diagnosis of several disorders that result in too much or too little dopamine, according to a group led by Penn State and including Rensselaer Polytechnic Institute and universities in China and Japan.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Viewing dopamine receptors in their native habitat
A new study led by UT Southwestern researchers reveals the structure of the active form of one type of dopamine receptor, known as D2, embedded in a phospholipid membrane.

Significant differences exist among neurons expressing dopamine receptors
An international collaboration, which included the involvement of the research team from the Institut de Neurociències of the UAB (INC-UAB), has shown that neurons expressing dopamine D2 receptors have different molecular features and functions, depending on their anatomical localization within the striatum.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Novelty speeds up learning thanks to dopamine activation
Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning.

Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine
Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report Nov.

Chronic adversity dampens dopamine production
People exposed to a lifetime of psychosocial adversity may have an impaired ability to produce the dopamine levels needed for coping with acutely stressful situations.

Read More: Dopamine News and Dopamine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.