Researchers determine bacteria structure responsible for traveler's diarrhea

July 10, 2019

(Boston)--For the first time researchers have deciphered the near-atomic structure of filaments, called 'pili', that extend from the surface of bacteria that cause traveler's diarrhea. Without pili, these bacteria do not cause disease. Knowing this structural information may lead to the development of new preventive therapies for the disease.

Traveler's diarrhea is an inconvenience to many in the U.S., but worldwide it can be deadly. It produces a watery diarrhea, which can cause life-threatening dehydration in infants or other vulnerable populations. With more than one billion cases each year, hundreds of thousands of deaths can be attributed to this bacterial disease which is caused by enterotoxigenic Escherichia coli (ETEC), invading the small intestine via pili.

Researchers from Boston University School of Medicine (BUSM), University of Virginia and Umeå University used heat to remove the pili from the bacteria and then used an electron microscope to look at the filaments in a near-native state, frozen in a glass-like solid and kept cold using liquid nitrogen. Because pili comprise hundreds of copies of a single protein, they were able to merge information from many pictures to determine a high-quality, three-dimensional view of the filament.

"We anticipate that our new, detailed knowledge of the structure of pili will help in developing vaccines and drugs to prevent and treat traveler's diarrhea. In particular we are excited about a peptide found in saliva that can disrupt unwinding and/or rewinding of pili as a means of inhibiting bacterial adhesion and disease," explained corresponding author Esther Bullitt, PhD, associate professor of physiology and biophysics at BUSM.
These findings appear online in the International Union of Crystallography Journal.

Funding for this study was provided by: Swedish Research Council (grant No. 2013-2379 to Magnus Andersson); Kempestiftelserna (grant to Magnus Andersson); National Institutes of Health, National Institute of General Medical Sciences (grant No. R35GM122510 to Edward Egelman); University of Virginia School of Medicine (bursary to Edward Egelman); School of Medicine, Boston University (bursary to Esther Bullitt); National Institutes of Health (grant No. S10RR025067 and S10-OD018149 to Edward Egelman; grant No. G20-RR31199 to University of Virginia).

Contact: Gina DiGravio, 617-358-7838,

Boston University School of Medicine

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to