Nav: Home

Robot-ants that can jump, communicate with each other and work together

July 10, 2019

Individually, ants have only so much strength and intelligence. However, as a colony, they can use complex strategies to complete sophisticated tasks and evade larger predators.

At EPFL, robotics researchers in Professor Jamie Paik's Laboratory have reproduced this phenomenon, developing tiny robots that display minimal physical intelligence on an individual level but that are able to communicate and act collectively. Despite being simple in design and weighing only 10 grams, each robot has multiple locomotion modes to navigate any type of surface. Collectively, they can quickly detect and overcome obstacles and move objects much larger and heavier than themselves. The related research has been published in Nature.

Robots inspired by trap-jaw ants

These three-legged, T-shaped origami robots are called Tribots. They can be assembled in only a few minutes by folding a stack of thin, multi-material sheets, making them suitable for mass production. Completely autonomous and untethered, Tribots are equipped with infrared and proximity sensors for detection and communication purposes. They could accommodate even more sensors depending on the application.

"Their movements are modeled on those of Odontomachus ants. These insects normally crawl, but to escape a predator, they snap their powerful jaws together to jump from leaf to leaf," says Zhenishbek Zhakypov, the first author. The Tribots replicate this catapult mechanism through an elegant origami design that combines multiple shape-memory alloy actuators. As a result, a single robot can produce five distinct locomotion gaits: vertical jumping, horizontal jumping, somersaulting to clear obstacles, walking on textured terrain and crawling on flat surfaces - just like these creatively resilient ants.

Roles: leader, worker and explorer

Despite having the same anatomy, each robot is assigned a specific role depending on the situation. 'Explorers' detect physical obstacles in their path, such as objects, valleys and mountains. After detecting an obstacle, they inform the rest of the group. Then, the 'leader' gives the instructions. The 'workers,' meanwhile, pool their strength to move objects. "Each Tribot, just like Odontomachus ants, can have different roles. However, they can also take on new roles instantaneously when faced with a new mission or an unknown environment, or even when other members get lost. This goes beyond what the real ants can do," says Paik.

Future applications

In practical situations, such as an emergency search mission, Tribots could be deployed en masse. And thanks to their multi-locomotive and multi-agent communication capabilities, they could locate a target quickly over a large surface without relying on GPS or visual feedback. "Since they can be manufactured and deployed in large numbers, having some 'casualties' would not affect the success of the mission," adds Paik."

"With their unique collective intelligence, our tiny robots can demonstrate better adaptability to unknown environments; therefore, for certain missions, they would outperform larger, more powerful robots."
-end-
Source

Zhenishbek Zhakypov, Kazuaki Mori, Koh Hosoda and Jamie Paik, Designing Minimal and Scalable Insect-Inspired Multi-Locomotion Millirobots, Nature, 10 July 2019.

Ecole Polytechnique Fédérale de Lausanne

Related Ants Articles:

Bees? Please. These plants are putting ants to work
This is the first plant species in the world found to have adapted traits that enables a mutually beneficial relationship with ants.
Ants use collective 'brainpower' to navigate obstacles
Ants use their numbers to overcome navigational challenges that are too large and disorienting to be tackled by any single individual, reports a new study in the open-access journal eLife.
Ants restore Mediterranean dry grasslands
A team of ecologists and agronomists led by Thierry Dutoit, a CNRS researcher, studied the impact of the Messor barbarus harvester ant on Mediterranean dry grasslands.
Risk aversion as a survival strategy in ants
Ants are excellent navigators and always find their way back to the nest.
Epigenetic switch found that turns warrior ants into forager ants
In 2016, researchers observed that they could reprogram the behavior of the Florida carpenter ant Camponotus floridanus.
Larger than life: Augmented ants
The first app of its kind allows users to interact with biodiversity research through augmented reality.
Ants: Jam-free traffic champions
Whether they occur on holiday routes or the daily commute, traffic jams affect cars as well as pedestrians.
Ants fight plant diseases
New research from Aarhus University shows that ants inhibit at least 14 different plant diseases.
Australian ants prepared for 'Insect Armageddon'
La Trobe University researchers have uncovered an exception to the global phenomenon known as 'Insect Armageddon' in the largest study of Australian insect populations conducted to date.
Robot-ants that can jump, communicate with each other and work together
A team of EPFL researchers has developed tiny 10-gram robots that are inspired by ants: they can communicate with each other, assign roles among themselves and complete complex tasks together.
More Ants News and Ants Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.