Nav: Home

Neural sleep patterns emerged at least 450 million years ago, Stanford researchers find

July 10, 2019

Researchers at the Stanford University School of Medicine have found that neural signatures in sleeping zebrafish are analogous to those of humans, suggesting that the brain activity evolved at least 450 million years ago, before any creatures crawled out of the ocean.

Scientists have known for more than 100 years that fish enter a sleeplike state, but until now they didn't know if their sleep resembled that of land animals.

The researchers found that when zebrafish sleep, they can display two states that are similar to those found in mammals, reptiles and birds: slow-wave sleep and paradoxical, or rapid eye movement, sleep. The discovery marks the first time these brain patterns have been recorded in fish.

"This moves the evolution of neural signatures of sleep back quite a few years," said postdoctoral scholar Louis Leung, PhD.

A paper describing the research will be published July 10 in Nature. Philippe Mourrain, PhD, associate professor of psychiatry and behavioral sciences, is the senior author. Leung is the lead author.

To study the zebrafish, common aquarium dwellers also known as danios, the researchers built a benchtop fluorescent light-sheet microscope capable of full-fish-body imaging with single-cell resolution. They recorded brain activity while the fish slept in an agar solution that immobilized them. They also observed the heart rate, eye movement and muscle tone of the sleeping fish using a fluorescence-based polysomnography that they developed.

They named the sleep states they observed "slow-bursting sleep," which is analogous to slow-wave sleep, and "propagating-wave sleep," analogous to REM sleep. Though the fish don't move their eyes during REM sleep, the brain and muscle signatures are similar. (Fish also don't close their eyes when they sleep, as they have no eyelids.)

Sleeping like the fish

The researchers found another similarity between fish and human sleep. By genetically disrupting the function of melanin-concentrating hormone, a peptide that governs the sleep-wake cycle, and observing neural expressions as the fish slept, the researchers determined that the hormone's signaling regulates the fish's propagating wave sleep the way it regulates REM sleep in mammals.

Other aspects of their sleep state are similar to those of land vertebrates, Mourrain said: The fish remain still, their muscles relax, their cardio-respiratory rhythms slow down and they fail to react when they're approached.

"They lose muscle tone, their heartbeat drops, they don't respond to stimuli -- the only real difference is a lack of rapid eye movement during REM sleep," Mourrain said, though he added, "The rapid movement of the eyes is not a good criterion of this state, and we prefer to call it paradoxical sleep, as the brain looks awake while one is asleep."

While scientists can't say for certain that all animals sleep, it appears to be a universal need among vertebrates and invertebrates. Animals will die if they are deprived of sleep long enough, and people who fail to receive adequate sleep suffer from mental problems such as memory lapses and impaired judgment, along with a higher risk of disorders such as obesity and high blood pressure.

The exact benefits of sleep are still a mystery, however. "It's an essential function," Mourrain said, "but we don't know precisely what it does."

He added that sleep disorders are linked to most neurological disorders such as autism spectrum disorders, Fragile X syndrome, and Alzheimer's and Parkinson's disease. "Sleep disturbances are an aggravating factor of these disorders," Mourrain said. It is critical to develop this animal model to study sleep functions at the cellular level, including neuronal connectivity and DNA repair, and in turn understand the pathophysiological consequences of sleep disruptions, he added.

The discovery means sleep research can be conducted on zebrafish, which are easy to study, in part because they're transparent. They breed quickly, are inexpensive to care for and are just over an inch long. Drug testing requires only the addition of chemicals to their water.

"Because the fish neural signatures are in essence the same as ours, we can use information about them to generate new leads for drug trials," Leung said. He added that mice, often a stand-in for human research, are nocturnal and a less relevant model for our sleep.

"As zebrafish are diurnal like humans, it's perhaps more biologically accurate to compare fish sleep with humans' for some aspects," Leung said.
-end-
Other Stanford co-authors are Gordon Wang, PhD, clinical assistant professor of psychiatry and behavioral sciences; postdoctoral scholar Romain Madelaine, PhD; life sciences researcher Gemini Skariah; Karl Deisseroth, MD, PhD, professor of bioengineering and of psychiatry and behavioral sciences; and Alexander Urban, PhD, assistant professor of psychiatry and behavioral sciences.

Researchers at the National Institute of Genetics in Mishima, Japan, also contributed to the study.

The work was funded by the National Institutes of Health (grant JP18H04988), the National Institute of Neurological Disorders and Stroke, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Mental Health, the National Institute on Drug Abuse, the National Institute on Aging, the National BioResource Project, the Defense Advanced Research Projects Agency, the National Science Foundation, the Wiegers Family Fund, the AE Foundation, the Tarlton Foundation, the Gatsby Foundation, the Tashia and John Morgridge Fund, the Stanford School of Medicine Dean's Fellowship, the Bright-Focus Foundation, the Simons Foundation and the John Merck Fund.

Stanford's Department of Psychiatry and Behavioral Sciences also supported the work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children's Health. For information about all three, please visit http://med.stanford.edu.

Print media contact: Mandy Erickson at (650) 723-7628 (merickso@stanford.edu)

Broadcast media contact: Margarita Gallardo at (650) 723-7897 (mjgallardo@stanford.edu)

Stanford Medicine

Related Sleep Articles:

'Short sleep' gene prevents memory deficits associated with sleep deprivation
The UCSF scientists who identified the two known human genes that promote 'natural short sleep' -- nightly sleep that lasts just four to six hours but leaves people feeling well-rested -- have now discovered a third, and it's also the first gene that's ever been shown to prevent the memory deficits that normally accompany sleep deprivation.
Short sleep duration and sleep variability blunt weight loss
High sleep variability and short sleep duration are associated with difficulties in losing weight and body fat.
Nurses have an increased risk of sleep disorders and sleep deprivation
According to preliminary results of a new study, there is a high prevalence of insufficient sleep and symptoms of common sleep disorders among medical center nurses.
Opioids are not sleep aids, and can actually worsen sleep research finds
Evidence that taking opioids will help people with chronic pain to sleep better is limited and of poor quality, according to an interdisciplinary team of psychologists and medics from the University of Warwick in partnership with Lausanne University Hospital, Switzerland.
Common sleep myths compromise good sleep and health
People often say they can get by on five or fewer hours of sleep, that snoring is harmless, and that having a drink helps you to fall asleep.
Sleep tight! Researchers identify the beneficial role of sleep
Why do animals sleep? Why do humans 'waste' a third of their lives sleeping?
Does extra sleep on the weekends repay your sleep debt? No, researchers say
Insufficient sleep and untreated sleep disorders put people at increased risk for metabolic problems, including obesity and diabetes.
Kicking, yelling during sleep? Study finds risk factors for violent sleep disorder
Taking antidepressants for depression, having post-traumatic stress disorder or anxiety diagnosed by a doctor are risk factors for a disruptive and sometimes violent sleep disorder called rapid eye movement (REM) sleep behavior disorder, according to a study published in the Dec.
Sleep health and yoga intervention delivered in low-income communities improves sleep
Pilot study results indicate that a sleep and yoga intervention has promising effects on improving sleep disturbance, sleep-related impairment, and sleep health behaviors.
Can weekend sleep make up for the detriments of sleep deprivation during the week?
In a recent Journal of Sleep Research study, short, but not long, weekend sleep was associated with an increased risk of early death in individuals under 65 years of age.
More Sleep News and Sleep Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.