Nav: Home

No more trial-and-error when choosing an electrolyte for metal-air batteries

July 10, 2019

Metal-air batteries have been pursued as a successor to lithium-ion batteries due to their exceptional gravimetric energy densities. They could potentially enable electric cars to travel a thousand miles or more on a single charge.

A promising new member of the alkali-metal-air battery family is the potassium-air battery, which has more than three times the theoretical gravimetric energy density of lithium ion batteries. A key challenge in designing potassium-air batteries is choosing the right electrolyte, the liquid which facilitates the transfer of ions between the cathode and anode.

Typically, electrolytes are chosen using a trial-and-error approach based on rules of thumb correlating several electrolyte properties, followed by exhaustive (and time consuming) testing of several electrolyte candidates to see if the desired performance is achieved.

Researchers from Washington University in St. Louis, led by Vijay Ramani, the Roma B. and Raymond H. Wittcoff Distinguished Professor of Environment & Energy at the McKelvey School of Engineering, have now shown how electrolytes for alkali-metal air batteries can be chosen using a single, easy-to-measure parameter.

Their work was published July 8 in the Proceedings of the National Academy of Sciences.

Ramani's team studied the fundamental interactions between the salt and solvent in the electrolyte and show how these interactions can influence overall battery performance. They developed a novel parameter, namely the "Electrochemical" Thiele Modulus, a measure of the ease of ion transport to and reaction at an electrode surface.

This research documents the first time that the Nobel Prize-winning Marcus-Hush theory of electron transfer has been used to study the impact of electrolyte composition on the movement of ions through the electrolyte, and their reaction at the surface of the electrode.

This Thiele Modulus was shown to exponentially decrease with increasing solvent reorganization energy -- a measure of the energy needed to modify the solvation sphere of a dissolved species. Thus, the solvent reorganization energy could be used to rationally select electrolytes for high performance metal-air batteries. No more trial-and-error.

"We started out trying to better understand the influence of the electrolyte on the oxygen reduction reaction in metal-air battery systems," said Shrihari Sankarasubramanian, a research scientist on Ramani's team and lead author of the study.

"We ended up showing how the diffusion of ions in the electrolyte and the reaction of these ions on the electrode surface are both correlated to the energy needed to break the solvation shell around the dissolved ions."

"Showing how a single parameter descriptor of the solvation energy correlates with both ion transport and surface reaction kinetics is a breakthrough advance," Ramani said. "It will allow us to rationally develop new high-performance electrolytes for metal-air batteries."
Joshua Kahky, a rising junior in the Department of Energy, Environmental and Chemical Engineering, is second author of the study. He helped carry out the study as an undergraduate summer intern in Ramani's lab.

Washington University in St. Louis

Related Ions Articles:

Synthetic nanochannels for iodide transport
Iodide channels have the potential to treat thyroid diseases and some types of cancers.
NASA's MAVEN reveals Mars has metal in its atmosphere
Mars has electrically charged metal atoms (ions) high in its atmosphere, according to new results from NASA's MAVEN spacecraft.
Fluctuation in the concentration of calcium ions contributes to brain shape
The first step in shaping the brain is that the neural plate, a sheet-like cell layer, curves to form the neural tube.
Clarifying how lithium ions ferry around in rechargeable batteries
IBS scientists observe the real-time ultrafast bonding of lithium ions with the solvents, in the same process that happens during charging and discharging of lithium batteries, and conclude that a new theory is needed.
Mobile gold fingers
Drugs containing gold have been used for centuries to treat conditions like rheumatoid arthritis.
New hydronium-ion battery presents opportunity for more sustainable energy storage
A new type of battery shows promise for sustainable, high-power energy storage.It's the world's first battery to use only hydronium ions as the charge carrier.
Clarifying the behaviors of negative hydrogen ions
The National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) has succeeded in revealing the flow of negative hydrogen ions using a combination of infrared lasers and electrostatic probes in the ion-source plasma, which generates a negative-hydrogen-ion beam.
The promise of greener power generation
The characterization of compounds produced in combustion could lead to cleaner, more efficient power stations.
A new record at BESSY II: 10 million ions cooled for the first time to 7.4 K
Magnetic ground states spectroscopically ascertained An international team from Sweden, Japan, and Germany has set a new temperature record for what are known as quadrupole ion traps that capture electrically charged molecular ions.
A new way of taming ions can improve future health care
A group of researchers at Chalmers University of Technology has discovered a completely new way of using lasers to accelerate ion beams.

Related Ions Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...