Nav: Home

Understanding how the mTOR complex comes together

July 10, 2019

In the world of biology, each individual cell also has many moving parts and pieces, each with specific roles and places to be. If one of those pieces isn't working correctly, it can affect the entire cell.

For the past five years, researchers at Brigham Young University have studied protein complexes that have the job of regulating cell growth and survival, processes that are essential for cells the grow healthily. Consequently, these protein complexes are also a target for cancer and other diseases.

The team is working to better understand the role and functionality of the complex, named the mechanistic target of rapamycin - or mTOR for short.

Learning more about mTOR and how it works is a stepping stone for others who might look for cancer therapies or ways to help treat diabetes and other diseases.

"We are not developing cancer therapies directly, but we contribute to the fundamental understanding of cellular function that underlies those types of treatments," said BYU professor and lead author Barry Willardson.

In a study published in Nature Communications, Willardson, along with several others, including current BYU graduate students Nicole Tensmeyer and Grant Ludlam, looked at how the mTOR complexes are assembled.

In a cell, proteins seldom work on their own, they work in complexes with other proteins. In this instance, mTOR has subunits called mLST8 and Raptor, two proteins that help to stabilize mTOR.

"Proteins are made as a linear string of amino acids, but eventually they have to come together into a three-dimensional shape," Tensmeyer said. "How they fold into this shape affects the way they can function. Additionally, they have to be in a very specific shape to work properly. Sometimes that can happen without assistance but sometimes it needs help getting into that shape, and that's where a chaperonin comes into play."

Much like an adult chaperone would watch over a group of children, a chaperonin is a cellular machine that supervises proteins and helps them get folded into the aforementioned specific shapes or get into position to operate correctly. In the case of the mTOR complex, a chaperonin called CCT is needed to fold both mLST8 and Raptor and help them assemble with mTOR.

"The folding done by CCT is normally a good thing," Ludlam said. "But in diseases like diabetes or cancer, mTOR can get out of control. We think if we can stop CCT from folding mLST8 then we can stop the cancer progression."

The group at BYU worked closely with scientists in Spain who were able to view the complex with a cryo-electron microscope, a cutting-edge instrument that uses electrons to give researchers an almost atomic-level look at the complexes and allows them to understand what is going on at the molecular level.
-end-
The study was funded by a grant from the National Institutes of Health and by the BYU Simmons Center for Cancer Research.

Brigham Young University

Related Diabetes Articles:

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.
Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.
Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).
Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.
People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.
Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.
New oral diabetes drug shows promise in phase 3 trial for patients with type 1 diabetes
A University of Colorado Anschutz Medical Campus study finds sotagliflozin helps control glucose and reduces the need for insulin in patients with type 1 diabetes.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
More Diabetes News and Diabetes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.