Nav: Home

Understanding how the mTOR complex comes together

July 10, 2019

In the world of biology, each individual cell also has many moving parts and pieces, each with specific roles and places to be. If one of those pieces isn't working correctly, it can affect the entire cell.

For the past five years, researchers at Brigham Young University have studied protein complexes that have the job of regulating cell growth and survival, processes that are essential for cells the grow healthily. Consequently, these protein complexes are also a target for cancer and other diseases.

The team is working to better understand the role and functionality of the complex, named the mechanistic target of rapamycin - or mTOR for short.

Learning more about mTOR and how it works is a stepping stone for others who might look for cancer therapies or ways to help treat diabetes and other diseases.

"We are not developing cancer therapies directly, but we contribute to the fundamental understanding of cellular function that underlies those types of treatments," said BYU professor and lead author Barry Willardson.

In a study published in Nature Communications, Willardson, along with several others, including current BYU graduate students Nicole Tensmeyer and Grant Ludlam, looked at how the mTOR complexes are assembled.

In a cell, proteins seldom work on their own, they work in complexes with other proteins. In this instance, mTOR has subunits called mLST8 and Raptor, two proteins that help to stabilize mTOR.

"Proteins are made as a linear string of amino acids, but eventually they have to come together into a three-dimensional shape," Tensmeyer said. "How they fold into this shape affects the way they can function. Additionally, they have to be in a very specific shape to work properly. Sometimes that can happen without assistance but sometimes it needs help getting into that shape, and that's where a chaperonin comes into play."

Much like an adult chaperone would watch over a group of children, a chaperonin is a cellular machine that supervises proteins and helps them get folded into the aforementioned specific shapes or get into position to operate correctly. In the case of the mTOR complex, a chaperonin called CCT is needed to fold both mLST8 and Raptor and help them assemble with mTOR.

"The folding done by CCT is normally a good thing," Ludlam said. "But in diseases like diabetes or cancer, mTOR can get out of control. We think if we can stop CCT from folding mLST8 then we can stop the cancer progression."

The group at BYU worked closely with scientists in Spain who were able to view the complex with a cryo-electron microscope, a cutting-edge instrument that uses electrons to give researchers an almost atomic-level look at the complexes and allows them to understand what is going on at the molecular level.
-end-
The study was funded by a grant from the National Institutes of Health and by the BYU Simmons Center for Cancer Research.

Brigham Young University

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
More Diabetes News and Diabetes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.