Nav: Home

Feinstein Institutes discovery may have implications for diabetes management and therapy

July 10, 2019

Theodoros Zanos, PhD, head of the Neural & Data Science Lab & assistant professor at the Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, and his collaborators, discovered how the vagus nerve relays signals from the periphery to the brain to help regulate glucose, potentially uncovering a new way to measure blood glucose levels. This finding progresses research into future bioelectronic medicine treatments and diagnostics for metabolic syndrome and diabetes. The findings were published today in the Springer Nature journal, Bioelectronic Medicine.

In humans, glucose is the primary sugar for high energy demanding cells in brain, muscle and peripheral neurons. Any deviation of normal blood glucose levels for an extended period of time can be dangerous or even fatal, so regulation of blood glucose levels is a biological imperative. Prior research showed that the vagus nerve, which connects to many major organs in the body and communicates changes in the body to the brainstem, plays a role in regulating metabolism. Because the specifics of how this was accomplished were largely unknown, Dr. Zanos and his colleagues' sought to identify the specific signals relayed from the periphery to the brain that responded to changes in glucose levels. By deciphering these signals, they can better understand when and how to stimulate the vagus nerve to regulate metabolism.

"One of our goals is to understand the neural code of the vagus nerve as it related to different conditions, because we believe by listening to and stimulating this nerve, we can open new possibilities to diagnose and treat various diseases," said Dr. Zanos. "The vagus nerve is one of the major information conduits of the body with an average of 100,000 nerve fibers, making this code difficult to pick up and decipher, so we have a lot to learn. We're excited to demonstrate in this most recent study that the vagus nerve of a mouse transports important signals from the periphery to the central nervous system related to glucose homeostasis - this discovery gets us closer to new technologies that will have the potential of helping many patients living with various metabolic diseases."

Dr. Zanos collaborated on this study with Feinstein Institutes researchers Emily Battinelli Masi, PhD, Todd Levy, MS, Tea Tsaava, MD, Chad E. Bouton, MS, and Sangeeta S. Chavan, PhD. Also co-authoring the article, titled "Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity," was Feinstein Institutes President and CEO Kevin J. Tracey, MD.

"This discovery by Dr. Zanos and our bioelectronic medicine researchers give us new understanding of the body's neural signaling and offers hope for diabetes management," said Dr. Tracey.

Bioelectronic medicine is a new approach to treating and diagnosing disease and injury that has emerged from the Feinstein Institutes' labs. It represents a convergence of molecular medicine, neuroscience and bioengineering. Bioelectronic medicine uses device technology to read and modulate the electrical activity within the body's nervous system, opening new doors to real-time diagnostics and treatment options for patients.

Last year, Dr. Zanos and his collaborators were the first to decode specific signals the nervous system uses to communicate immune status and inflammation to the brain. Identifying these neural signals and what they're communicating about the body's health was a step forward for bioelectronic medicine as provided insight into diagnostic and therapeutic targets, and device development. Those findings were published in Proceedings of the National Academy of Sciences (PNAS).
-end-


Northwell Health

Related Diabetes Articles:

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.
Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.
Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).
Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.
People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.
Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.
New oral diabetes drug shows promise in phase 3 trial for patients with type 1 diabetes
A University of Colorado Anschutz Medical Campus study finds sotagliflozin helps control glucose and reduces the need for insulin in patients with type 1 diabetes.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
More Diabetes News and Diabetes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.