New research shows that laser spectral linewidth is classical-physics phenomenon

July 10, 2020

New ground-breaking research from the University of Surrey could change the way scientists understand and describe lasers - establishing a new relationship between classical and quantum physics.

In a comprehensive study published by the journal Progress in Quantum Electronics, a researcher from Surrey, in partnership with a colleague from Karlsruhe Institute of Technology and Fraunhofer IOSB in Germany, calls into question 60 years of orthodoxy surrounding the principles of lasers and the laser spectral linewidth - the foundation for controlling and measuring wavelengths of light.

In the new study, the researchers find that a fundamental principle of lasers, that the amplification of light compensates for the losses of the laser, is only an approximation. The team quantify and explain that a tiny excess loss, which is not balanced by the amplified light but by normal luminescence inside the laser, provides the answer to the spectral linewidth of the laser.

One of these loss mechanisms, the outcoupling of light from the laser, produces the laser beam used in vehicle manufacturing, telecommunications, laser surgery, GPS and so much more.

Markus Pollnau, Professor in Photonics at the University of Surrey, said: "Since the laser was invented in 1960, the laser spectral linewidth has been treated as the stepchild in the descriptions of lasers in textbooks and university teaching worldwide, because its quantum-physical explanation has placed extraordinary challenges even for the lecturers.

"As we have explained in this study, there is a simple, easy-to-understand derivation of the laser spectral linewidth, and the underlying classical physics proves the quantum-physics attempt of explaining the laser spectral linewidth hopelessly incorrect. This result has fundamental consequences for quantum physics."

University of Surrey

Related Quantum Physics Articles from Brightsurf:

Know when to unfold 'em: Applying particle physics methods to quantum computing
Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at Berkeley Lab has successfully adapted and applied a common error-reduction technique to the field of quantum computing.

Quantum physics: Physicists successfully carry out controlled transport of stored light
A team of physicists at Mainz University has successfully transported light stored in a quantum memory over a distance of 1.2 millimeters.

New system detects faint communications signals using the principles of quantum physics
Researchers at the National Institute of Standards and Technology (NIST) have devised and demonstrated a system that could dramatically increase the performance of communications networks while enabling record-low error rates in detecting even the faintest of signals.

Quirky response to magnetism presents quantum physics mystery
In a new study just published and highlighted as an Editor's Suggestion in Physical Review Letters, scientists describe the quirky behavior of one such magnetic topological insulator.

Evidence of power: Phasing quantum annealers into experiments from nonequilibrium physics
Scientists at Tokyo Institute of Technology (Tokyo Tech) use commercially available quantum annealers, a type of quantum computer, to experimentally probe the validity of an important mechanism from nonequilibrium physics in open quantum systems.

Adapting ideas from quantum physics to calculate alternative interventions for infection and cancer
Published in Nature Physics, findings from a new study co-led by Cleveland Clinic and Case Western Reserve University teams show for the first time how ideas from quantum physics can help develop novel drug interventions for bacterial infections and cancer.

Quantum physics: Realization of an anomalous Floquet topological system
An international team led by physicists from the Ludwig-Maximilians Universitaet (LMU) in Munich realized a novel genuine time-dependent topological system with ultracold atoms in periodically-driven optical honeycomb lattices.

Quantum physics provides a way to hide ignorance
Students can hide their ignorance and answer questions correctly in an exam without their lack of knowledge being detected by teachers -- but only in the quantum world.

Quantum physics: Physicists develop a new theory for Bose-Einstein condensates
Bose-Einstein condensates are often described as the fifth state of matter: At extremely low temperatures, gas atoms behave like a single particle.

Attosecond physics: Quantum brakes in molecules
Physicists have measured the flight times of electrons emitted from a specific atom in a molecule upon excitation with laser light.

Read More: Quantum Physics News and Quantum Physics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to