Optical shaping of polarization anisotropy in a laterally-coupled-quantum-dot dimer

July 10, 2020

Coupled quantum dots can be an important building block in the development of scalable quantum devices by controlling the quantum states of two adjacent quantum dots (QDs) electrically and optically. Recently, remarkable progress has been made in controlling the coupled states of CQDs, but individual control of vertically stacked quantum dots is still challenging. Unless each dot can provide a logical bit operation, this becomes a limit in progress towards scalable qubit arrays. Laterally-coupled QDs can be an alternative system if the charge state and the lateral coupling of two dots are controlled separately. For example, tunable vector electric fields with arbitrary magnitude and angles can be generated in laterally-coupled QDs when four electrodes are implemented in a mesa structure.

In a new paper published in Light Science & Applications, an international team of scientists from China, South Korea, and the UK has found that emission from laterally coupled quantum dots is strongly polarized along the coupling direction (90°), and its polarization anisotropy can be shaped by changing the orientation of the polarized excitation. When the linear polarization of non-resonant excitation is perpendicular to the coupled direction (0°), excitons and local biexcitons from the two separate quantum dots still show an emission anisotropy with a small degree of polarization (10%). On the other hand, when the excitation polarization becomes parallel to the coupled direction, the polarization anisotropy of excitons, local biexcitons, and coupled biexcitons becomes enhanced with a degree of polarization of 74%. They also observed a consistent anisotropy in time-resolved photoluminescence. Therefore, the coupling of laterally-coupled QDs can be controlled by excitation polarization. Specifically, they revealed the optically-controlled anisotropic wavefunctions in terms of the anisotropy of the emission intensity and decay rate. These results confirm that optical shaping of the polarization anisotropy is possible in laterally coupled QDs, where the spatial arrangement of excitons and biexcitons can be controlled by excitation polarization.

"New information storage technologies could use this polarized light to control the optical properties of coupled quantum dots. The idea of combining quantum dots - nanoscale semiconductor crystals - into coupled pairs has attracted great attention due to the increased number of exotic quantum states that can be realized for storing data. This 'optical shaping' reflects different arrangements of excitons - bound states of electrons and holes - in the coupled dots, and could open new avenues for data storage and thermoelectric energy harvesting."
-end-


Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

Related Polarization Articles from Brightsurf:

Highly sensitive detection of circularly polarized light without a filter
Japanese scientists developed a photodiode using a crystalline film composed of lead perovskite compounds with organic chiral molecules to detect circularly polarized light without a filter.

Anti-hacking based on the circular polarization direction of light
The Internet of Things (IoT) allowing smart phones, home appliances, drones and self-driving vehicles to exchange digital information in real time requires a powerful security solution, as it can have a direct impact on user safety and assets.

Germanium telluride's hidden properties at the nanoscale revealed
Germanium Telluride is an interesting candidate material for spintronic devices.

FAST reveals mystery of fast radio bursts from the universe
The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) has revealed some mystery of the fast radio bursts, according to a study published in Nature on Oct.

Graphene detector reveals THz light's polarization
Physicists have created a broadband detector of terahertz radiation based on graphene.

Squaring the circle -- Breaking the symmetry of a sphere to control the polarization of light
Scientists at Tokyo Institute of Technology (Tokyo Tech, Japan) and Institute of Photonic Sciences (ICFO, Spain) develop a method to generate circularly polarized light from the ultimate symmetrical structure: the sphere.

Optical shaping of polarization anisotropy in a laterally-coupled-quantum-dot dimer
Coupled-quantum-dot (CQD) structures are considered to be an important building block in the development of scalable quantum devices.

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
A hemispherical vanadium oxide cluster has a cavity that can accommodate a bromine molecule.

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities
A plasmonic spin-Hall nanograting structure that simultaneously detects both the polarization and phase singularities of the incident beam is reported.

A new theory about political polarization
A new model of opinion formation shows how the extent to which people like or dislike each other affects their political views -- and vice versa.

Read More: Polarization News and Polarization Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.