Nav: Home

Single-cell RNA sequencing outlines the immune landscape of severe COVID-19

July 10, 2020

A new single-cell RNA sequencing analysis of more than 59,000 cells from three different patient cohorts provides a detailed look at patients' immune responses to severe cases of COVID-19. The results suggest that patients with severe COVID-19 experience increased regulation of the type I interferon (IFN-I) inflammation-triggering pathway - a signature that the researchers also observed in patients hospitalized with severe cases of influenza. Their findings suggest that anti-inflammatory treatment strategies for COVID-19 should also be aimed toward the IFN-I signaling pathway, in addition to targeting inflammatory molecules such as TNF, IL-1?, and IL-6 that have been implicated in COVID-19. Seong Seok Lee and colleagues sequenced the RNA from a total of 59,572 blood cells obtained from four healthy donors, eight patients with mild or severe COVID-19, and five patients with severe influenza. Patients in both the mild and severe COVID-19 cohorts all showed increased regulation of the TNF/IL-1ß-driven inflammatory response, while patients with severe COVID-19 also exhibited an increased IFN-I response. By comparison, patients with severe flu showed increased expression of various IFN-stimulated genes, but did not experience TNF/IL-1ß responses as seen in COVID-19 patients. Unlike the flu cohort, patients in the severe COVID-19 cohort exhibited the IFN-I signature concurrently with TNF/IL-1ß-driven inflammation - a combination also not seen in patients with milder cases of COVID-19. Based on their results, the scientists propose that the IFN-I response exacerbates inflammation in patients with severe COVID-19. Their results, along with past mouse studies that highlight how the timing of IFN-I expression is critical to determining the outcome of SARS-CoV-2 infection, support targeting IFN-I as a potential treatment strategy for severe COVID-19.
-end-


American Association for the Advancement of Science

Related Rna Articles:

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.
Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.
New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.
Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.
A new approach to reveal the multiple structures of RNA
The key of the extraordinary functionality of ribonucleic acid, better known as RNA, is a highly flexible and dynamic structure.
RNA modification -- Methylation and mopping up
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a novel type of chemical modification in bacterial RNAs.
New RNA molecules may play a role in aging
Using a new sequencing method, this class of previously invisible RNA molecules were found to be abundantly expressed.
AI reveals nature of RNA-protein interactions
A deep learning tool could help in structure-based drug discovery.
Uncovering the principles behind RNA folding
Using high-throughput next-generation sequencing technology, Professor Julius Lucks found similarities in the folding tendencies among a family of RNA molecules called riboswitches, which play a pivotal role in gene expression.
A new, unified pathway for prebiotic RNA synthesis
Adding to support for the RNA world hypothesis, Sidney Becker and colleagues have presented what's not been shown before -- a single chemical pathway that could generate both the purine and pyrimidine nucleosides, the key building blocks of RNA.
More RNA News and RNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.