How Venus flytraps snap

July 10, 2020

Venus flytraps catch spiders and insects by snapping their trap leaves. This mechanism is activated when unsuspecting prey touch highly sensitive trigger hairs twice within 30 seconds. A study led by researchers at the University of Zurich has now shown that a single slow touch also triggers trap closure - probably to catch slow-moving larvae and snails.

The Venus flytrap (Dionaea muscipula) is perhaps the most well-known carnivorous plant. It catches its prey, mostly spiders and insects, using a sophisticated trapping mechanism. Its distinct leaves have three highly sensitive trigger hairs on each lobe. These hairs react to even the slightest touches - e.g. when a fly crawls along the leaf - by sending out an electrical signal, which quickly spreads across the entire leaf. If two signals are triggered in a short time, the trap snaps within milliseconds.

New trigger for trapping mechanism

The physiological reactions on which this trapping mechanism is based have been studied for over 200 years. The consensus has been that every sufficiently strong touch of a trigger hair causes an electrical signal, and that two signals within 30 seconds result in the closing of the trap. A new study from the University of Zurich (UZH) and ETH Zurich has now found another triggering mechanism. "Contrary to popular belief, slowly touching a trigger hair only once can also cause two signals and thus lead to the snapping of the trap," says co-last author Ueli Grossniklaus, director of the Department of Plant and Microbial Biology at UZH.

First, the interdisciplinary team of researchers determined the forces needed to trigger the plant's trapping mechanism. They did this by using highly sensitive sensors and high-precision microrobotic systems developed by the team of co-last author Bradley J. Nelson at the Institute of Robotics and Intelligent Systems at ETH Zurich. This enabled the scientists to deflect the trigger hairs to a precise angle at a pre-defined speed in order to measure the relevant forces. These experiments confirmed the previous theory. If the chosen parameters approximate the touch of regular prey, it takes two touches for the trap to snap.

From the collected data, the researchers at the ETH Institute for Building Materials developed a mathematical model to determine the range of angular deflection and velocity thresholds that activate the snapping mechanism. "Interestingly, the model showed that at slower angular velocities one touch resulted in two electrical signals, such that the trap ought to snap," says Grossniklaus. The researchers were subsequently able to confirm the model's prediction in experiments.

Catching slow prey

When open, the lobes of the Venus flytrap's leaves are bent outwards and under strain - like a taut spring. The trigger signal leads to a minute change in the leaves' curvature, which makes the trap snap instantaneously. The electrical signals are generated by ion channels in the cell membrane, which transport atoms out of and into the cell. "We think that the ion channels stay open for as long as the membrane is mechanically stretched. If the deflection occurs slowly, the flow of ions is enough to trigger several signals, which causes the trap to close," explains co-first author Hannes Vogler, plant biologist at UZH. The newly discovered triggering mechanism could be a way for the Venus flytrap to catch slow-moving prey, such as larvae or snails.
-end-


University of Zurich

Related Ion Channels Articles from Brightsurf:

Watch how cells squeeze through channels
Observations of cells moving through small channels shed new light on cell migration in 3D environments, researchers report October 6 in Biophysical Journal.

New research says Sodium-ion batteries are a valid alternative to Lithium-ion batteries
A team of scientists including WMG at the University of Warwick combined their knowledge and expertise to assess the current status of the Na-ion technology from materials to cell development, offering a realistic comparison of the key performance indicators for NBs and LIBs.

Deep channels link ocean to Antarctic glacier
Newly discovered deep seabed channels beneath Thwaites Glacier in West Antarctica may be the pathway for warm ocean water to melt the underside of the ice.

NIST's SAMURAI measures 5G communications channels precisely
Engineers at the National Institute of Standards and Technology (NIST) have developed a flexible, portable measurement system to support design and repeatable laboratory testing of fifth-generation (5G) wireless communications devices with unprecedented accuracy across a wide range of signal frequencies and scenarios.

A new role for a tiny linker in transmembrane ion channels
In a study of large-conductance potassium (BK) channela, Jianhan Chen and colleagues UMass Amherst and Washington University report in eLife that their experiments have revealed 'the first direct example of how non-specific membrane interactions of a covalent linker can regulate the activation of a biological ion channel.'

June's SLAS discovery features the special collection, 'ion channels and relevant drug screening approaches'
In this issue, Guest Editor Veli-Pekka Jaakola, Ph.D., (Confo Therapeutics, Belgium) highlights a series of articles focused on new screening tools and assays that find new chemical matter for medically relevant membrane protein targets

How blood cells deform, recover when traveling through tiny channels
In this week's Biomicrofluidics, a method to characterize the shape recovery of healthy human RBCs flowing through a microfluidic constricted channel is reported.

Ball-and-chain inactivation of ion channels visualized by cryo-electron microscopy
Ion channels, which allow potassium and sodium ions to flow in and out of cells, are crucial in neuronal 'firing' in the central nervous system and for brain and heart function.

Discovery of bacterial ancestor yields new insight on calcium channels
The discovery of a calcium channel that is likely a 'missing link' in the evolution of mammalian calcium channels has been reported today in the open-access journal eLife.

Calcium channels play a key role in the development of diabetes
Researchers at Karolinska Institutet in Sweden have deciphered the diabetogenic role of a certain type of calcium channel in insulin-secreting beta cells.

Read More: Ion Channels News and Ion Channels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.