Like humans, beluga whales form social networks beyond family ties

July 10, 2020

A groundbreaking study using molecular genetic techniques and field studies brings together decades of research into the complex relationships among beluga whales (Delphinapterus leucas) that spans 10 locations across the Arctic from Alaska to Canada and Russia to Norway. The behavior of these highly gregarious whales, which include sophisticated vocal repertoires, suggest that this marine mammal lives in complex societies. Like killer whales (Orcinus orca) and African elephants (Loxodonta Africana), belugas were thought to form social bonds around females that primarily comprise closely related individuals from the same maternal lineage. However, this hypothesis had not been formally tested.

The study, led by Florida Atlantic University's Harbor Branch Oceanographic Institute, is the first to analyze the relationship between group behaviors, group type, group dynamics, and kinship in beluga whales. Findings, just published in Scientific Reports, reveal several unexpected results. Not only do beluga whales regularly interact with close kin, including close maternal kin, they also frequently associate with more distantly related and unrelated individuals.

Findings indicate that evolutionary explanations for group living and cooperation in beluga whales must expand beyond strict inclusive fitness arguments to include other evolutionary mechanisms. Belugas likely form multi-scale societies from mother-calf dyads to entire communities. From these perspectives, beluga communities have similarities to human societies where social networks, support structures, cooperation and cultures involve interactions between kin and non-kin. Given their long lifespan (approximately 70 years) and tendency to remain within their natal community, these findings reveal that beluga whales may form long-term affiliations with unrelated as well as related individuals.

"This research will improve our understanding of why some species are social, how individuals learn from group members and how animal cultures emerge," said Greg O'Corry-Crowe, Ph.D., lead author and a research professor at FAU's Harbor Branch. "It also has implications for traditional explanations based on matrilineal care for a very rare life-history trait in nature, menopause, which has only been documented in a handful of mammals, including beluga whales and humans."

Researchers found that belugas formed a limited number of group types, from mother-calf dyads to adult male groups, and from mixed-age groups to large herds. These same group types were consistently observed across population and habitats. Furthermore, certain behaviors were associated with group type, and group membership was found to often be dynamic.

"Unlike killer and pilot whales, and like some human societies, beluga whales don't solely or even primarily interact and associate with close kin. Across a wide variety of habitats and among both migratory and resident populations, they form communities of individuals of all ages and both sexes that regularly number in the hundreds and possibly the thousands," said O'Corry-Crowe. "It may be that their highly developed vocal communication enables them to remain in regular acoustic contact with close relatives even when not associating together."

Beluga whale groupings (beyond mother-calf dyads) were not usually organized around close maternal relatives. The smaller social groups, as well as the larger herds, routinely comprised multiple matrilines. Even where group members shared the same mtDNA lineage, microsatellite analysis often revealed that they were not closely related, and many genealogical links among group members involved paternal rather than maternal relatives. These results differ from earlier predictions that belugas have a matrilineal social system of closely associating female relatives. They also differ from the association behavior of the larger toothed whales that informed those predictions. In 'resident' killer whales, for example, both males and females form groups with close maternal kin where they remain for their entire lives.

"Beluga whales exhibit a wide range of grouping patterns from small groups of two to 10 individuals to large herds of 2,000 or more, from apparently single sex and age-class pods to mixed-age and sex groupings, and from brief associations to multi-year affiliations," said O'Corry-Crowe. "This variation suggests a fission-fusion society where group composition and size are context-specific, but it may also reflect a more rigid multi-level society comprised of stable social units that regularly coalesce and separate. The role kinship plays in these groupings has been largely unknown."

For the study, researchers used field observations, mtDNA profiling, and multi-locus genotyping of beluga whales to address fundamental questions about beluga group structure, and patterns of kinship and behavior, which provide new insights into the evolution and ecology of social structure in this Arctic whale.

The study was conducted at 10 locations, in different habitats, across the species' range, spanning from small, resident groups (Yakutat Bay) and populations (Cook Inlet) in subarctic Alaska to larger, migratory populations in the Alaskan (Kasegaluk Lagoon, Kotzebue Sound, Norton Sound), Canadian (Cunningham Inlet, Mackenzie Delta, Husky Lakes) and Russian (Gulf of Anadyr) Arctic to a small, insular population in the Norwegian High Arctic (Svalbard).

"This new understanding of why individuals may form social groups, even with non-relatives, will hopefully promote new research on what constitutes species resilience and how species like the beluga whale can respond to emerging threats including climate change," said O'Corry-Crowe.
-end-
Study co-authors are Robert Suydam, Ph.D., North Slope Bourough Department of Wildlife Management; Lori Quakenbush; Alaska Department of Fish and Game; Thomas G. Smith, Ph.D., Eco Marine Corporation; Christian Lydersen, Ph.D., Norweigen Polar Institute; Kit M. Kovacs, Ph.D., Norweigen Polar Institute; Jack Orr, Ph.D., Fisheries and Oceans Canada; Lois Harwood, M.Sc., Fisheries and Oceans Canada; Dennis Litovka, Ph.D., Office of the Governor and Government of the Chukotka Autnomous Region; and Tatiana Ferrer, coordinator of research programs, FAU's Harbor Branch.

All activities involving live whales were permitted (USMMPA #782-1719-06, NARA #2013/36156-2, GOS #2013/00050-42 a.512, NOAA782-1438) and approved by the relevant authorities in each country: the United States National Marine Fisheries Service Office of Protected Resources, the Russian Federation Marine Mammal Permits Office, the Department of Fisheries and Oceans, Canada scientific licenses, and the Norwegian Animal Care Board. All activities were performed in accordance with these guidelines and regulations.

About Harbor Branch Oceanographic Institute:

Founded in 1971, Harbor Branch Oceanographic Institute at Florida Atlantic University is a research community of marine scientists, engineers, educators and other professionals focused on Ocean Science for a Better World. The institute drives innovation in ocean engineering, at-sea operations, drug discovery and biotechnology from the oceans, coastal ecology and conservation, marine mammal research and conservation, aquaculture, ocean observing systems and marine education. For more information, visit http://www.fau.edu/hboi.

About Florida Atlantic University:

Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University, with an annual economic impact of $6.3 billion, serves more than 30,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida. FAU's world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of critical areas that form the basis of its strategic plan: Healthy aging, biotech, coastal and marine issues, neuroscience, regenerative medicine, informatics, lifespan and the environment. These areas provide opportunities for faculty and students to build upon FAU's existing strengths in research and scholarship. For more information, visit fau.edu.

Florida Atlantic University

Related Arctic Articles from Brightsurf:

Archive of animal migration in the Arctic
A global archive with movement data collected across three decades logs changes in the behaviour of Arctic animals

The Arctic is burning in a whole new way
'Zombie fires' and burning of fire-resistant vegetation are new features driving Arctic fires -- with strong consequences for the global climate -- warn international fire scientists in a commentary published in Nature Geoscience.

Warming temperatures are driving arctic greening
As Arctic summers warm, Earth's northern landscapes are changing. Using satellite images to track global tundra ecosystems over decades, a new study found the region has become greener, as warmer air and soil temperatures lead to increased plant growth.

Arctic transitioning to a new climate state
The fast-warming Arctic has started to transition from a predominantly frozen state into an entirely different climate with significantly less sea ice, warmer temperatures, and more rain, according to a comprehensive new study of Arctic conditions.

New depth map of the Arctic Ocean
An international team of researchers has published the most detailed submarine map of the Artic Ocean.

Where are arctic mosquitoes most abundant in Greenland and why?
Bzz! It's mosquito season in Greenland. June and July is when Arctic mosquitoes (Aedes nigripes) are in peak abundance, buzzing about the tundra.

What happens in Vegas, may come from the Arctic?
Ancient climate records from Leviathan Cave, located in the southern Great Basin, show that Nevada was even hotter and drier in the past than it is today, and that one 4,000-year period in particular may represent a true, ''worst-case'' scenario picture for the Southwest and the Colorado River Basin -- and the millions of people who rely on its water supply.

Arctic Ocean changes driven by sub-Arctic seas
New research explores how lower-latitude oceans drive complex changes in the Arctic Ocean, pushing the region into a new reality distinct from the 20th-century norm.

Arctic Ocean 'regime shift'
Stanford scientists find the growth of phytoplankton in the Arctic Ocean has increased 57 percent over just two decades, enhancing its ability to soak up carbon dioxide.

Spider baby boom in a warmer Arctic
Climate change leads to longer growing seasons in the Arctic.

Read More: Arctic News and Arctic Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.