DNA Shows Neandertals Were Not Our Ancestors

July 10, 1997

University Park, Pa. -- A team of U.S. and German researchers has extracted mitochondrial DNA from Neandertal bone showing that the Neandertal DNA sequence falls outside the normal variation of modern humans.

"These results indicate that Neandertals did not contribute mitochondrial DNA to modern humans," says Dr. Mark Stoneking, associate professor of anthropology at Penn State. "Neandertals are not our ancestors."

The research also reaffirms the origins of modern humans in Africa. Reporting in today's (July 11) issue of the journal Cell, the researchers detail their methods and the results of analysis of Neandertal mitochondrial DNA. The research team includes Matthias Krings, graduate student, and Dr. Svante Paabo, professor of zoology, University of Munich; Dr. Ann Stone, postdoctoral fellow, University of Arizona; Ralf W. Schmitz and Heike Krainitzki of Rhineland Museum, Bonn, Germany; and Stoneking.

Current theory holds that Neandertals became extinct only 30,000 years ago and co- existed with modern humans in Europe. The team, however, found that Neandertals and modern humans diverged genetically 500,000 to 600,000 years ago, suggesting that though they may have lived at the same time, Neandertals did not contribute genetic material to modern humans.

Since 1991, an interdisciplinary project of the Rhineland Museum, headed by Schmitz, has focused on the Neandertal-type specimen. This specimen was found in 1856 near Dusseldorf, Germany. As a part of this project, a sample was removed for DNA analysis.

"The ability to extract DNA from ancient bone is dependent on many factors, including preservation, temperature and humidity," says Stoneking, a faculty member in Penn State's College of the Liberal Arts.

Paabo previously showed that even if extracting ancient DNA is possible, it tends to be damaged and degraded, yielding only short fragments. The researchers used a method of overlapping short strands of DNA to obtain a mitochondrial DNA sequence of 378 base pairs. To ensure that errors caused by damaged DNA were not incorporated into the sequence and that modern human DNA did not contaminate the samples, the researchers ran multiple extractions and amplifications.

They also sent a sample to Penn State's Anthropological Genetics Laboratory where Stone, then a Ph.D. candidate at Penn State, ran a parallel extraction and amplification of the DNA.

To begin amplification, the researchers used two human primers -- small pieces of DNA that match the beginning of the sequence to be amplified.

"The first two human primers we chose worked," says Stoneking. "It turns out this was a lucky choice."

To check that the amplified DNA was really Neandertal, the researchers prepared primers based on their extracted sample and ran them on numerous human DNA samples.

"The Neandertal primers did not amplify any human DNA," says Stoneking. "Most human primers would probably not work on Neandertal DNA."

The researchers compared the Neandertal sequence with 2,051 human sequences and 59 common chimpanzee sequences. They found that the differences in Neandertal DNA occurred at sites where differences usually occur in both humans and chimps.

"The changes reflect the evolutionary pattern typical of mitochondrial DNA sequences of living humans and chimpanzees, not that of random damage or degradation," says Stoneking.

When the researchers looked at the Neandertal sequence with respect to 994 human mitochondrial DNA lineages including Africans, Europeans, Asians, Native Americans, Australians and Pacific Islanders, they found the number of base pair differences between the Neandertal sequence and these groups was 27 or 28 for all groups.

"While Neandertals inhabited the same geographic region as contemporary Europeans, the observed differences between the Neandertal sequence and modern Europeans do not indicate a closer relationship to modern Europeans than to other contemporary human populations," says Stoneking.

The researchers used phylogenetic tree reconstruction -- a method that uses mitochondrial DNA to place individual groups in relative relationship -- to check the results of their pair- wise DNA comparisons. The trees show that the Neandertal sequence branches before the divergence of the various human mitochondrial DNA lineages, but after the split from chimpanzees.

This phylogenetic tree also shows that the first three branches of humans are of African origin, with only the fourth branch showing non-African sequences.

"The branching pattern indicates that the ancestor of the mitochondrial DNA gene pool of contemporary humans lived in Africa," says Stoneking of Penn State.

The researchers are confident with their results, but they caution that they are derived from only one individual. They also warn that DNA may be difficult to extract from other specimens. While the results indicate that Neandertals did not contribute mitochondrial DNA to modern humans, it is still possible that they contributed other genes.

###



EDITORS:


For more information or interviews, contact A'ndrea Elyse Messer , science and research information officer, at (814) 865-9481 (office); 867-1774 (home) or at aem1@psu.edu by email.

Penn State

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.