Researchers discover gene that could be key in evolution of hardwoods

July 11, 2001

Researchers at Michigan Technological University have discovered a gene that may have played a key role in the evolution of hardwood trees such as oaks and maples. Their work is featured on the cover of the July 11 issue of The Plant Cell.

Millions of years ago, gymnosperms--including conifers such as pines and redwoods--were the only type of plants on earth. Then angiosperms--the flowering plants--appeared, among them hardwood trees.

While angiosperms are considered more advanced than gymnosperms, their origins largely remain a mystery. At least a part of that mystery may now be solved, thanks to the work of the lead author, Dr. Laigen Li, and researchers at the Plant Biotechnology Research Center in Michigan Tech's School of Forestry and Wood Products.

The Michigan Tech researchers, including Dr. Vincent Chiang, the center's director, have described the genetic pathway used to create syringyl lignin, a type of lignin that is unique to angiosperms. Lignin is found in all trees and is the substance that makes them stiff. But in gymnosperms, also known as softwoods, only guaiacyl lignin is present. In hardwoods, both guaiacyl and syringyl lignin are found.

The researchers identified and, for the first time, cloned a gene from aspen, an angiosperm, which they suspected was responsible for producing syringyl lignin. They introduced the gene into E. coli bacteria, and found that it produced a protein with a very specific purpose: It assembled hardwoods' syringyl lignin.

For years, most scientists have believed that another gene controlled the production of both lignin types. "But we thought it didn't make sense for plants to evolve new proteins and still use the old gene," Chiang said. "Our discovery of a syringyl-specific gene overturns that traditional model; it's been very exciting."

The researchers also have identified two characteristics of syringyl lignin that could give hardwoods an evolutionary advantage. Before angiosperms appeared, the function of lignin in plants was primarily to conduct water and other nutrients. In angiosperms, however, syringyl lignin took on an important mechanical role, serving as the "skeleton" for angiosperm trees. In addition, Chiang notes, the syringyl lignin molecule includes additional methoxyl (H3CO) groups that the researchers suspect increase its toxicity. A tree with this type of lignin could be less vulnerable to disease, Chiang said.
-end-
The article, "The Last Step of Syringyl Monolignol Biosynthese in Angiosperms Is Regulated by a Novel Gene Encoding Sinapyl Alcohol Dehydrogenase," is the first on the subject of a tree species to appear in The Plant Cell since the journal was first published twelve years ago. In addition to Li and Chiang, the coauthors are Dr. Xio Fei Cheng and Dr. Scott Harding of Michigan Tech, Dr. Jacqueline Leshkevich, formerly of Michigan Tech, and Toshiaki Umezawa of Kyoto University.

For more information... The Plant Cell Web Site: http://www.plantcell.org, Dr. Vincent Chiang, 906-487-2959, vchiang@mtu.edu, Marcia Goodrich, media relations manager at Michigan Tech, 906-487-2343, mlgoodri@mtu.edu.

Michigan Technological University

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.