Sandia researchers apply energy surety model to military bases

July 11, 2006

ALBUQUERQUE, N.M. - A Sandia National Laboratories research team headed by Dave Menicucci has taken a Labs-developed energy surety model to a tangible level by applying it to military bases. The team, working with the U.S. Army, is looking at how military bases can improve energy generation and transmission through a new system called the Energy Surety.

"In today's grid system, power generators [coal, nuclear, gas] are located far from the load -- the place where people live, work, and use power," Menicucci says. "This requires much distributed wiring and has a potential for power disruption."

What the microgrid team envisions for military bases is an energy surety system that uses more small generation units and storage near the load and less generation at big plants. It can operate with or without the grid. In addition to being smaller, the power generators would integrate a diversified fuel mix, include secure on-site fuel storage and apply sustainable technology, such as renewable energy.

Rush Robinett, senior manager of Sandia's Energy and Infrastructures Futures Group, says this model is "like back to the future."

"Military bases used to co-manufacture energy in the same area as is proposed here," he says. "Now most are totally dependent on the grid for power."

Energy systems with high levels of energy surety must be safe -- safely supplying energy to end users; secure -- using diversified energy sources; reliable -- maintaining power when and where needed; sustainable -- being able to be maintained indefinitely ("indefinite" is based on the American Indian definition of seven generations or 200 years); and cost-effective -- producing energy at an acceptable (and preferably lowest) cost.

Menicucci says the current grid system meets some of these criteria, while the proposed microgrid system for military bases would meet all.

"The existing [grid] system is generally safe and secure," Menicucci says. "The generation and storage are reliable. The problem comes from the fact that generators are far away from people and the power has to be transmitted through thousands of miles of lines."

If any of these lines go down, either through an act of nature or terrorism, power will be disrupted and the country's national security could be threatened.

Menicucci also asserts that current generation methods are not sustainable.

"It's not that we are running out of oil and coal, it's that we can't predict the cost, implying that we can't afford it," he says. "The demand for more fuel from China and India are driving prices up. There are also limits to where we can drill."

While the cost-effectiveness of the current generation system is OK, Menicucci anticipates it may not stay that way for long.

The Sandia team believes the solution is what they are researching for Army bases across the country -- a microgrid that reduces the single points of failure by cutting down the number of transmission lines.

In looking at the five criteria of an energy surety approach, the microgrid meets all. It is safe -- it's not introducing any new dangers. It's secure because it uses a diverse mix of fuels -- solar, wind, and oil. It's reliable because it uses a variety of types of generators. There is a redundancy of generation and storage. It's sustainable because it is using renewable energies. And, it is cost-effective because it uses energy sources that are readily available and appropriate for the site. (An example is that solar could be used in the Southwest and wind along the nation's coastlines.)

Menicucci says there are two reasons Sandia paired with the Army in planning microgrid systems at military bases. Sandia is a national security laboratory and the team members, most of whom have been in the armed forces, understand how the military operates.

The research team is now working with the Army to develop an energy surety microgrid for a soon-to-be selected military base. They are resolving such issues as where to put the smaller generators, how much storage is needed, and microgrid control.

Next spring a test military base will be determined, and a microgrid system will be installed and tested.

"The ultimate goal is to have microgrids at all military bases in the country and eventually in civilian communities," Menicucci says.
-end-
Sandia National Laboratories
A Department of Energy National Laboratory
Managed and Operated by Sandia Corporation
ALBUQUERQUE, NM LIVERMORE, CA
MEDIA RELATIONS DEPARTMENT MS 0165
ALBUQUERQUE, NM 87185-0165
PHONE: (505) 844-8066 FAX: (505) 844-0645

Funding for the project comes from the U.S. Army and the internal Sandia Laboratory Directed Research and Development (LDRD) program. Sandia is a National Nuclear Security Administration laboratory.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Release and images are available at http://www.sandia.gov/news/resources/releases/2006/microgrid.html

Sandia National Laboratories' World Wide Web home page is located at http://www.sandia.gov. Sandia news releases, news tips, science photo gallery, and periodicals can be found at the News Center button.

DOE/Sandia National Laboratories

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.