Research reveals Earth's core affects length of day

July 11, 2013

Research at the University of Liverpool has found that variations in the length of day over periods of between one and 10 years are caused by processes in the Earth's core.

The Earth rotates once per day, but the length of this day varies. A yeas, 300million years ago, lasted about 450 days and a day would last about 21 hours. As a result of the slowing down of the Earth's rotation the length of day has increased.

The rotation of the earth on its axis, however, is affected by a number of other factors - for example, the force of the wind against mountain ranges changes the length of the day by plus or minus a millisecond over a period of a year.

Professor Richard Holme, from the School of Environmental Sciences, studied the variations and fluctuations in the length of day over a one to 10 year period between 1962 and 2012. The study took account of the effects on the Earth's rotation of atmospheric and oceanic processes to produce a model of the variations in the length of day on time scales longer than a year.

Professor Holme said: "The model shows well-known variations on decadal time scales, but importantly resolves changes over periods between one and 10 years. Previously these changes were poorly characterised; the study shows they can be explained by just two key signals, a steady 5.9 year oscillation and episodic jumps which occur at the same time as abrupt changes in the Earth's magnetic field, generated in the Earth's core.

He added: "This study changes fundamentally our understanding of short-period dynamics of the Earth's fluid core. It leads us to conclude that the Earth's lower mantle, which sits above the Earth's outer core, is a poor conductor of electricity giving us new insight into the chemistry and mineralogy of the Earth's deep interior."
-end-
The research was conducted in partnership with the Université Paris Diderot and is published in Nature.

University of Liverpool

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.