Nav: Home

Study explains how a protein deficiency causes spinal muscular atrophy

July 11, 2016

Scientists and doctors know that the devastating disease spinal muscular atrophy (SMA) arises from a problem with both copies of the SMN1 gene, leading to a lack of the survival motor neuron (SMN) protein. But they don't know why the lack of SMN protein causes spinal neurons to die, leading to muscle weakness in patients. A new study implicates a key cellular mechanism as defective in SMA for the first time, providing a new lead for developing future interventions.

The study also yielded a surprising twist: A mild version of the same defect may also confer resistance to infection in carriers of the disease for whom only one copy of the gene has lost function.

SMA is the most common genetic cause of infant death in the U.S. and there is no effective treatment or cure, said corresponding author Anne Hart, professor of neuroscience at Brown University. The disease affects one in 10,000 children in Caucasian populations; both copies of the SMN1 gene are defective in patients. But about one in 40 people are carriers in that they have one defective and one functional copy of the SMN1 gene.

In the Proceedings of the National Academy of Sciences, Hart's team of researchers reported that that reduced levels of the SMN protein disrupt a cellular process called "endocytosis," which all cells normally use to recycle and redistribute proteins and membranes. Endocytosis is especially important in nerve cells, called neurons, because they must also rapidly release neurotransmitters to communicate with each other and with muscles, across connections called synapses, Hart said.

"Without this specialized neurotransmitter recycling and endocytosis, synaptic vesicles are not recycled fast enough to keep up with nerve and muscle cell activity," she said.

The process of endocytosis, however, is also exploited by infectious viruses and bacteria. So when this process is weakened in carriers who may have a more modest defect, it may make it harder for some pathogens to cause infections.

Most of the study's experiments were done in the roundworm C. elegans, which have an SMN gene and motor neurons -- those that connect to muscle -- that are very similar to humans, making them valuable models in which to study this disease. In worms with defective SMN gene copies, the researchers observed several signs of degraded endocytosis and poor synapse structure, compared to worms with normal genes.

"Our results suggest that SMN loss perturbs both general and neuron-specific endocytosis," Hart said.

Infection effect

The infection tests were done in human cells, including cells derived from SMA patients. There the researchers used the JC polyomavirus, which is pervasive in people, but typically only causes disease in people with weakened immune systems. They observed that the virus comparatively struggled to infect cells with reduced SMN levels.

While the study shows that reduced SMN disrupts endocytosis, it doesn't explain why. Hart said that's the next step in her work to defeat SMA.

For now, this study doesn't provide any proof that being an SMN carrier reduces a person's likelihood of becoming sickened by infections. That would require considerable further work by epidemiologists and infectious disease specialists.

"But no one has even considered this idea before," Hart said. "Here we have preliminary results suggesting this novel idea could be true. In the world of infectious disease genetics, we hope that SMN is now on the radar."

The result may also explain why, even though SMA is a devastating disease, carriers remain relatively common, Hart said. It could make sense from an evolutionary perspective.

"It seems possible that SMA is relatively common because carriers might be protected from infection," she said. "If carriers are more likely to survive and reproduce, then evolutionary pressure might favor carriers in the long term, as is seen for sickle cell anemia and malaria infection."
-end-
Maria Dimitriadi, who was a fellow at Brown University, is the paper's lead author. Other authors are Aaron Derdowski, Geetika Kalloo, Melissa Maginnis, Patrick O'Hern, Bryn Bliska, Altar Sorkac, Ken Nguyen, Steven Cook, George Poulogiannis, Walter Atwood and David Hall.

The SMA Foundation and the National Institutes of Health funded the study.

Brown University

Related Protein Articles:

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.
A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.
Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.
Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.
Protein injections in medicine
One day, medical compounds could be introduced into cells with the help of bacterial toxins.
Discovery of an unusual protein
Scientists from Bremen discover an unusual protein playing a significant role in the Earth's nitrogen cycle.
Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
Quorn protein builds muscle better than milk protein
A study from the University of Exeter has found that mycoprotein, the protein-rich food source that is unique to Quorn products, stimulates post-exercise muscle building to a greater extent than milk protein.
More Protein News and Protein Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.