Nav: Home

Study explains how a protein deficiency causes spinal muscular atrophy

July 11, 2016

Scientists and doctors know that the devastating disease spinal muscular atrophy (SMA) arises from a problem with both copies of the SMN1 gene, leading to a lack of the survival motor neuron (SMN) protein. But they don't know why the lack of SMN protein causes spinal neurons to die, leading to muscle weakness in patients. A new study implicates a key cellular mechanism as defective in SMA for the first time, providing a new lead for developing future interventions.

The study also yielded a surprising twist: A mild version of the same defect may also confer resistance to infection in carriers of the disease for whom only one copy of the gene has lost function.

SMA is the most common genetic cause of infant death in the U.S. and there is no effective treatment or cure, said corresponding author Anne Hart, professor of neuroscience at Brown University. The disease affects one in 10,000 children in Caucasian populations; both copies of the SMN1 gene are defective in patients. But about one in 40 people are carriers in that they have one defective and one functional copy of the SMN1 gene.

In the Proceedings of the National Academy of Sciences, Hart's team of researchers reported that that reduced levels of the SMN protein disrupt a cellular process called "endocytosis," which all cells normally use to recycle and redistribute proteins and membranes. Endocytosis is especially important in nerve cells, called neurons, because they must also rapidly release neurotransmitters to communicate with each other and with muscles, across connections called synapses, Hart said.

"Without this specialized neurotransmitter recycling and endocytosis, synaptic vesicles are not recycled fast enough to keep up with nerve and muscle cell activity," she said.

The process of endocytosis, however, is also exploited by infectious viruses and bacteria. So when this process is weakened in carriers who may have a more modest defect, it may make it harder for some pathogens to cause infections.

Most of the study's experiments were done in the roundworm C. elegans, which have an SMN gene and motor neurons -- those that connect to muscle -- that are very similar to humans, making them valuable models in which to study this disease. In worms with defective SMN gene copies, the researchers observed several signs of degraded endocytosis and poor synapse structure, compared to worms with normal genes.

"Our results suggest that SMN loss perturbs both general and neuron-specific endocytosis," Hart said.

Infection effect

The infection tests were done in human cells, including cells derived from SMA patients. There the researchers used the JC polyomavirus, which is pervasive in people, but typically only causes disease in people with weakened immune systems. They observed that the virus comparatively struggled to infect cells with reduced SMN levels.

While the study shows that reduced SMN disrupts endocytosis, it doesn't explain why. Hart said that's the next step in her work to defeat SMA.

For now, this study doesn't provide any proof that being an SMN carrier reduces a person's likelihood of becoming sickened by infections. That would require considerable further work by epidemiologists and infectious disease specialists.

"But no one has even considered this idea before," Hart said. "Here we have preliminary results suggesting this novel idea could be true. In the world of infectious disease genetics, we hope that SMN is now on the radar."

The result may also explain why, even though SMA is a devastating disease, carriers remain relatively common, Hart said. It could make sense from an evolutionary perspective.

"It seems possible that SMA is relatively common because carriers might be protected from infection," she said. "If carriers are more likely to survive and reproduce, then evolutionary pressure might favor carriers in the long term, as is seen for sickle cell anemia and malaria infection."
-end-
Maria Dimitriadi, who was a fellow at Brown University, is the paper's lead author. Other authors are Aaron Derdowski, Geetika Kalloo, Melissa Maginnis, Patrick O'Hern, Bryn Bliska, Altar Sorkac, Ken Nguyen, Steven Cook, George Poulogiannis, Walter Atwood and David Hall.

The SMA Foundation and the National Institutes of Health funded the study.

Brown University

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
More Protein News and Protein Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...