Nav: Home

Ancient supernovae buffeted Earth's biology with radiation dose, researcher says

July 11, 2016

LAWRENCE -- Research published in April provided "slam dunk" evidence of two prehistoric supernovae exploding about 300 light years from Earth. Now, a follow-up investigation based on computer modeling shows those supernovae likely exposed biology on our planet to a long-lasting gust of cosmic radiation, which also affected the atmosphere.

"I was surprised to see as much effect as there was," said Adrian Melott, professor of physics at the University of Kansas, who co-authored the new paper appearing The Astrophysical Journal Letters, a peer-reviewed express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research.

"I was expecting there to be very little effect at all," he said. "The supernovae were pretty far way -- more than 300 light years -- that's really not very close."

According to Melott, initially the two stars that exploded 1.7 to 3.2 million and 6.5 to 8.7 million years ago each would have caused blue light in the night sky brilliant enough to disrupt animals' sleep patterns for a few weeks.

But their major effect would have come from radiation, which the KU astrophysicist said would have packed doses equivalent to one CT scan per year for every creature inhabiting land or shallower parts of the ocean.

"The big thing turns out to be the cosmic rays," Melott said. "The really high-energy ones are pretty rare. They get increased by quite a lot here -- for a few hundred to thousands of years, by a factor of a few hundred. The high-energy cosmic rays are the ones that can penetrate the atmosphere. They tear up molecules, they can rip electrons off atoms, and that goes on right down to the ground level. Normally that happens only at high altitude."

Melott's collaborators on the research are Brian Thomas and Emily Engler of Washburn University, Michael Kachelrieß of the Institutt for fysikk in Norway, Andrew Overholt of MidAmerica Nazarene University and Dimitry Semikoz of the Observatoire de Paris and Moscow Engineering Physics Institute.

The boosted exposure to cosmic rays from supernovae could have had "substantial effects on the terrestrial atmosphere and biota," the authors write.

For instance, the research suggested the supernovae might have caused a 20-fold increase in irradiation by muons at ground level on Earth.

"A muon is a cousin of the electron, a couple of hundred times heavier than the electron -- they penetrate hundreds of meters of rock," Melott said. "Normally there are lots of them hitting us on the ground. They mostly just go through us, but because of their large numbers contribute about 1/6 of our normal radiation dose. So if there were 20 times as many, you're in the ballpark of tripling the radiation dose."

Melott said the uptick in radiation from muons would have been high enough to boost the mutation rate and frequency of cancer, "but not enormously. Still, if you increased the mutation rate you might speed up evolution."

Indeed, a minor mass extinction around 2.59 million years ago may be connected in part to boosted cosmic rays that could have helped to cool Earth's climate. The new research results show that the cosmic rays ionize the Earth's atmosphere in the troposphere -- the lowest level of the atmosphere -- to a level eight times higher than normal. This would have caused an increase in cloud-to-ground lightning.

"There was climate change around this time," Melott said. "Africa dried out, and a lot of the forest turned into savannah. Around this time and afterwards, we started having glaciations -- ice ages -- over and over again, and it's not clear why that started to happen. It's controversial, but maybe cosmic rays had something to do with it."
NASA's Exobiology and Evolutionary Biology program supported the research, and computation time was provided by the High Performance Computing Environment at Washburn University.

University of Kansas

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...