Making telescopes that curve and twist

July 11, 2017

A new tool for computational design allows users to turn any 3D shape into a collapsible telescoping structure. New mathematical methods developed by researchers at Carnegie Mellon University capture the complex and diverse properties of such structures, which are valuable for a variety of applications in 3D fabrication and robotics--particularly where mechanisms must be compact in size and easily deployable.

The research, "Computational Design of Telescoping Structures," led by Carnegie Mellon Professors Stelian Coros and Keenan Crane and PhD student Christopher Yu, will be presented at the annual SIGGRAPH conference, 30 July to 3 August in Los Angeles. The conference each year spotlights the most innovative in computer graphics research and interactive techniques worldwide.

Traditional telescopes are perfectly straight, and their ability to expand from a compact form into a much bigger structure has been widely exploited in engineering design. So far, however, there hasn't been a systematic study of the types of shapes that can be modeled by telescoping structures, nor practical tools for telescopic design. At a recent maker faire, the researchers came across a set of retractable toy claws, fashioned after the popular X-Men character, Wolverine. Inspired by the claws' curved shape, they began to explore the idea of automating the design of telescoping structures, exploring a wide variety of shapes that could come out of a basic telescope model.

Far beyond the example of a typical straight telescope used for star gazing, other collapsible, deployable structures can benefit from a curved or twisted telescoping design: camping equipment such as tents or large outdoor structures used for music festivals; a heart stent that is tiny at the point of insertion but expands once it is surgically placed; or a robotic arm that can retract itself into a cylinder shape the size of a Coke can, enabling user portability and versatility.

"Among deployable mechanisms, telescopes are very interesting. Once you expand them, they are very flexible and you can make a lot of different shapes, all with the same telescope," notes Crane, coauthor and Assistant Professor of Computer Science and Robotics at Carnegie Mellon. "We wanted to know what are all the possible shapes you can make from a telescoping structure."

The team's mathematical model of telescoping structures starts with three common-sense requirements: each shell must be manufacturable from rigid material (like metal), the telescope must be able to extend and contract without bumping into itself, and there should be no empty wasted space between nested pieces. These basic requirements led to a key geometric insight: the complicated mechanical description of a telescope can be replaced by simple geometric curves that exhibit a constant amount of bend but arbitrary "twist," significantly generalizing the straight telescopes found in typical engineering designs. The team successfully prototyped applications in 3D fabrication and robotics, using their novel system to design both a flexible, controllable robot arm, and a tent-like structure that grows to several times its original volume.
-end-
The research was supported by an NSF Graduate Research Fellowship. At Carnegie Mellon, Crane also directs the Geometry Collective, Stelian Coros is assistant professor in the Robotics Institute and Christopher Yu is a PhD student in computer science whose research is in computer graphics.

For the full paper and video, visit http://graphics.cs.cmu.edu/?p=1278. To register for SIGGRAPH 2017 and hear from the authors themselves, visit http://s2017.SIGGRAPH.org.

About SIGGRAPH 2017

The annual SIGGRAPH conference is a five-day interdisciplinary educational experience in the latest computer graphics and interactive techniques, including a three-day commercial exhibition that attracts hundreds of companies from around the world. The conference also hosts the international SIGGRAPH Computer Animation Festival, showcasing works from the world's most innovative and accomplished digital film and video creators. Juried and curated content includes outstanding achievements in time-based art, scientific visualization, visual effects, real-time graphics, and narrative shorts. SIGGRAPH 2017 will take place from 30 July-3 August 2017 in Los Angeles. Visit the SIGGRAPH 2017 website or follow SIGGRAPH on Facebook, Twitter, YouTube, or Instagram for more detailed information.

About ACM SIGGRAPH

The ACM Special Interest Group on Computer Graphics and Interactive Techniques is an interdisciplinary community interested in research, technology, and applications in computer graphics and interactive techniques. Members include researchers, developers, and users from the technical, academic, business, and art communities. ACM SIGGRAPH enriches the computer graphics and interactive techniques community year-round through its conferences, global network of professional and student chapters, publications, and educational activities.



About ACM


ACM, the Association for Computing Machinery, is the world's largest educational and scientific computing society, uniting educators, researchers, and professionals to inspire dialogue, share resources, and address the field's challenges. ACM strengthens the computing profession's collective voice through strong leadership, promotion of the highest standards, and recognition of technical excellence. ACM supports the professional growth of its members by providing opportunities for lifelong learning, career development, and professional networking.

Association for Computing Machinery

Related Robotics Articles from Brightsurf:

Borrowing from robotics, scientists automate mapping of quantum systems
Riddhi Gupta has taken an algorithm used for autonomous vehicles and adapted it to help characterise and stabilise quantum technology.

COVID-19 should be wake-up call for robotics research
Robots could perform some of the 'dull, dirty and dangerous' jobs associated with combating the COVID-19 pandemic, but that would require many new capabilities not currently being funded or developed, an editorial in the journal Science Robotics argues.

How robots can help combat COVID-19: Science Robotics editorial
Can robots be effective tools in combating the COVID-19 pandemic?

Novel use of robotics for neuroendovascular procedures
The advanced technology has the potential to change acute stroke treatment.

Robotics: Teaming for future soldier combat
The US Army's investment for the 10 year, Army-led foundational research program has resulted in advanced science in four critical areas of ground combat robotics that affect the way US Warfighters see, think, move and team.

New haptic arm places robotics within easy reach
Imagine being able to build and use a robotic device without the need for expensive, specialist kit or skills.

AI-guided robotics enable automation of complex synthetic biological molecules
This article describes a platform that combines artificial intelligence-driven synthesis planning, flow chemistry and a robotically controlled experimental platform to minimize the need for human intervention in the synthesis of small organic molecules.

A step forward in wearable robotics: Exosuit assists with both walking and running
A soft robotic exosuit -- worn like a pair of shorts -- can make both walking and running easier for the wearer, a new study reports.

A first in medical robotics: Autonomous navigation inside the body
Bioengineers at Boston Children's Hospital report the first demonstration of a robot able to navigate autonomously inside the body.

Engineers build a soft robotics perception system inspired by humans
An international team of researchers has developed a perception system for soft robots inspired by the way humans process information about their own bodies in space and in relation to other objects and people.

Read More: Robotics News and Robotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.