Nav: Home

Measuring the effects of drugs on cancer cells

July 11, 2018

A new approach established at the University of Zurich sheds light on the effects of anti-cancer drugs and the defense mechanisms of cancer cells. The method makes it possible to quickly test various drugs and treatment combinations at the cellular level.

Cancer cells are cells over which the human body has lost control. The fact that they are transformed body cells makes it all the more difficult to combat them effectively - whatever harms them usually also harms the healthy cells in the body. This is why it is important to find out about the cancer cells' particular weaknesses.

In certain types of breast and ovarian cancer, for example, such a weakness is given by mutations in genes that play a role in DNA repair. Treating cancer cells of this kind with a group of newly approved drugs - so-called PARP inhibitors - makes it difficult for these cells to replicate their DNA, and they ultimately perish. Normal cells, however, can solve such problems using their intact DNA repair machinery.

Effect of drugs observed in thousands of cells

The Department of Molecular Mechanisms of Disease of the University of Zurich uses cancer cell cultures to investigate the exact effects of this new group of drugs. "Our method of fluorescence-based high-throughput microscopy allows us to observe precisely when and how a drug works in thousands of cells at the same time," explains postdoc researcher Jone Michelena. Her measurements have revealed how PARP inhibitors lock their target protein in an inactive state on the cells' DNA and how this complicates DNA replication, which in turn leads to DNA damage. If this damage is not repaired quickly, the cells can no longer replicate and eventually die.

The new approach enables researchers to analyze the initial reaction of cancer cells to PARP inhibitors with great precision. What's special about the very sensitive procedure is the high number of individual cells that can be analyzed concurrently with high resolution using the automated microscopes at the Center for Microscopy and Image Analysis of UZH. Cancer cells vary and thus react differently to drugs depending on their mutations and the cell cycle phase they are in. The UZH researchers have now found a way to make these differences visible and quantify them precisely.

Rapid and precise testing of cancer cells

Outside of the laboratory, the success of PARP inhibitors and other cancer medication is complicated by the fact that in some patients the cancer returns - after a certain point, the cancer cells become resistant and no longer respond to the drugs. The high-throughput method employed by UZH researchers is particularly useful for this kind of problem: Cells can be tested in multiple conditions with short turnover times, and specific genes can be eliminated one by one in a targeted manner. Doing so can reveal which cell functions are needed for a certain drug to take effect.

In addition, mechanisms of drug combinations can be analyzed in great detail. In her study, Jone Michelena has already identified such a combination, which inhibits cancer cell proliferation to a significantly higher extent than the combination's individual components by themselves. "We hope that our approach will make the search for strategies to combat cancer even more efficient," says Matthias Altmeyer, head of the research group at the Department of Molecular Mechanisms of Disease at UZH.
-end-


University of Zurich

Related Cancer Cells Articles:

Cancer cells send signals boosting survival and drug resistance in other cancer cells
Researchers at University of California San Diego School of Medicine report that cancer cells appear to communicate to other cancer cells, activating an internal mechanism that boosts resistance to common chemotherapies and promotes tumor survival.
A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Single gene encourages growth of intestinal stem cells, supporting 'niche' cells -- and cancer
A gene previously identified as critical for tumor growth in many human cancers also maintains intestinal stem cells and encourages the growth of cells that support them, according to results of a study led by Johns Hopkins researchers.
Prostate cancer cells grow with malfunction of cholesterol control in cells
Advanced prostate cancer and high blood cholesterol have long been known to be connected, but it has been a chicken-or-egg problem.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.
Hybrid immune cells in early-stage lung cancer spur anti-tumor T cells to action
Researchers have identified a unique subset of these cells that exhibit hybrid characteristics of two immune cell types -- neutrophils and antigen-presenting cells -- in samples from early-stage human lung cancers.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Sleep hormone helps breast cancer drug kill more cancer cells
Tiny bubbles filled with the sleep hormone melatonin can make breast cancer treatment more effective, which means people need a lower dose, giving them less severe side effects.
Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor
Baylor College of Medicine researchers report a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.

Related Cancer Cells Reading:

A Beginner's Guide to Targeted Cancer Treatments
by Elaine Vickers (Author)

How To Kill Cancer Cells: Make Your Body Healthy Now
by Natalie Mitchell (Author)

One Renegade Cell: How Cancer Begins (Science Masters Series)
by Robert A. Weinberg (Author)

The Cancer Fighting Diet: Diet and Nutrition Strategies to Help Weaken Cancer Cells and Improve Treatment Results
by Dr. Johannes Coy Sc.D. (Author), Maren Franz (Author)

The Immortal Life of Henrietta Lacks
by Random House Audio

Cancer Stem Cells
by Vinagolu K. Rajasekhar (Author)

Cancer Cell Signaling: Methods and Protocols
by Humana press

Cancer Cell Signaling: Targeting Signaling Pathways Toward Therapeutic Approaches to Cancer
by Apple Academic Press

Asymmetric Cell Division in Development, Differentiation and Cancer (Results and Problems in Cell Differentiation)
by Jean-Pierre Tassan (Editor), Jacek Z. Kubiak (Editor)

NCCN Guidelines for Patients®: Lung Cancer (Non-Small Cell Lung Cancer) 2018
by National Comprehensive Cancer Network® (NCCN®) (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#499 Technology, Work and The Future (Rebroadcast)
This week, we're thinking about how rapidly advancing technology will change our future, our work, and our well-being. We speak to Richard and Daniel Susskind about their book "The Future of Professions: How Technology Will Transform the Work of Human Experts" about the impacts technology may have on professional work. And Nicholas Agar comes on to talk about his book "The Sceptical Optimist" and the ways new technologies will affect our perceptions and well-being.