Nav: Home

Using light for next-generation data storage

July 11, 2018

Tiny, nano-sized crystals of salt encoded with data using light from a laser could be the next data storage technology of choice, following research by Australian scientists.

The researchers from the University of South Australia and University of Adelaide, in collaboration with the University of New South Wales, have demonstrated a novel and energy-efficient approach to storing data using light.

"With the use of data in society increasing dramatically due to the likes of social media, cloud computing and increased smart phone adoption, existing data storage technologies such as hard drive disks and solid-state storage are fast approaching their limits," says project leader Dr Nick Riesen, a Research Fellow at the University of South Australia.

"We have entered an age where new technologies are required to meet the demands of 100s of terabyte (1000 gigabytes) or even petabyte (one million gigabytes) storage. One of the most promising techniques of achieving this is optical data storage."

Dr Riesen and University of Adelaide PhD student Xuanzhao Pan developed technology based on nanocrystals with light-emitting properties that can be efficiently switched on and off in patterns that represent digital information. The researchers used lasers to alter the electronic states, and therefore the fluorescence properties, of the crystals.

Their research shows that these fluorescent nanocrystals could represent a promising alternative to traditional magnetic (hard drive disk) and solid-state (solid state drive) data storage or blu-ray discs. They demonstrated rewritable data storage in crystals that are 100s of times smaller than that visible with the human eye.

"What makes this technique for storing information using light interesting is that several bits can be stored simultaneously. And, unlike most other optical data storage techniques, the data is rewritable," says Dr Riesen.

This 'multilevel data storage' - storing several bits on a single crystal - opens the way for much higher storage densities. The technology also allows for very low-power lasers to be used, increasing its energy efficiency and being more practical for consumer applications.

"The low energy requirement also makes this system ideal for optical data storage on integrated electronic circuits," says Professor Hans Riesen from the University of New South Wales.

"These results showcase the benefits of establishing complementary research capabilities and infrastructure at collaborating universities - this has been a deliberate strategy in the photonics domain that is bearing fruit across a number of projects," says Professor Tanya Monro, DVC-R at the University of South Australia.

The technology also has the potential to push forward the boundaries of how much digital data can be stored through the development of 3D data storage.

"We think it's possible to extend this data storage platform to 3D technologies in which the nanocrystals would be embedded into a glass or polymer, making use of the glass-processing capabilities we have at IPAS," says Professor Heike Ebendorff-Heidepriem, University of Adelaide. "This project shows the far-reaching applications that can be achieved through transdisciplinary research into new materials."

Dr Riesen says: "3D optical data storage could potentially allow for up to petabyte level data storage in small data cubes. To put that in perspective, it is believed that the human brain can store about 2.5 petabytes. This new technology could be a viable solution to the great challenge of overcoming the bottleneck in data storage."

The research is published in the open access journal Optics Express.
-end-


University of South Australia

Related Nanocrystals Articles:

Single-particle spectroscopy of CsPbBr3 perovskite reveals the origin low electrolumine
Researchers from Tokyo Institute of Technology (Tokyo Tech) used the method of single-particle spectroscopy to study electroluminescence in light-emitting devices.
University of Konstanz researchers create uniform-shape polymer nanocrystals
Researchers from the University of Konstanz's Collaborative Research Centre (CRC) 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' successfully generate uniform-shape nanocrystals using direct polymerization
Understanding the (ultra-small) structure of silicon nanocrystals
New research provides insight into the structure of silicon nanocrystals, a substance that promises to provide efficient lithium ion batteries that power your phone to medical imaging on the nanoscale.
Squeezed nanocrystals: A new model predicts their shape when blanketed under graphene
In a collaboration between the US Department of Energy's Ames Laboratory and Northeastern University, scientists have developed a model for predicting the shape of metal nanocrystals or 'islands' sandwiched between or below two-dimensional (2D) materials such as graphene.
Invention by NUS chemists opens the door to safer and less expensive X-ray imaging
Professor Liu Xiaogang from the National University of Singapore led a team to develop novel lead halide perovskite nanocrystals that are highly sensitive to X-ray irradiation.
Hidden gapless states on the path to semiconductor nanocrystals
When chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw were starting work on yet another material designed for the efficient production of nanocrystalline zinc oxide, they didn't expect any surprises.
Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again
A team led by scientists at Berkeley Lab found a way to make a liquid-like state behave more like a solid, and then to reverse the process.
Scientists create a UV detector based on nanocrystals synthesized by using ion implantation
Scientists at the Lobachevsky University have been working for several years to develop solar-blind photodetectors operating in the UV spectral band.
Nanocrystals emit light by efficiently 'tunneling' electrons
Using advanced fabrication techniques, engineers at the University of California San Diego have built a nanosized device out of silver crystals that can generate light by efficiently 'tunneling' electrons through a tiny barrier.
UV narrow-band photodetector based on indium oxide nanocrystals
An international team of researchers from Russia and India has created a narrow-band UV photodetector based on indium oxide nanocrystals embedded in a thin film of aluminum oxide.
More Nanocrystals News and Nanocrystals Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.