Nav: Home

New gears in your sleep clock

July 11, 2018

Kyoto, Japan -- A long-studied factor controlling human sleep cycles actually has two forms, one that keeps a key protein stable and another that promotes its degradation.

From the heart and lungs that propel our blood, to our rumbling stomachs at lunch time and feeling of tiredness in the evening, our bodies keep steady rhythms day in and day out.

This 'circadian clock' is a series of tightly controlled cycles of specific amounts of proteins that make us either sleepy or wakeful. It has recently attracted public attention with the 2017 Nobel Prize for Physiology or Medicine, but numerous aspects of the clock's functions or how it regulates our health remain a mystery.

One of the first circadian rhythm sleep disorders to be discovered was Familial Advanced Sleep Phase Syndrome, or FASPS. Patients with this condition fall asleep early in the evening, around 7 pm, and wake up in the early mornings, around 3 am, and are thus unable to adjust to standard cycles without undergoing treatment.

"FASPS is characterized by a mutation in the gene that codes for a protein essential for the circadian clock, called Period 2, or PER2," explains corresponding author Jean-Michel Fustin from Kyoto University's Graduate School of Pharmaceutical Science. "The stability of the PER2 protein is a key factor in determining how fast your circadian clock ticks."

In FASPS patients, PER2 is unstable, resulting in a sped-up clock. This is due to a mutation that changes one amino acid in the protein from a serine to a glycine.

"The stability of PER2 is regulated by the phosphorylation of several critical amino acids -- a common way proteins are regulated in the body. This process is conducted by other proteins called kinases," continues Fustin. "We knew of a kinase that could destabilize PER2 -- Casein kinase 1 delta, or CK1D -- but we couldn't find one that could stabilize it by phosphorylating the serine that is mutated in FASPS patients."

Writing in PNAS, Fustin and his collaborators explain that the stabilizing kinase was within the Ck1d gene itself all along. Their findings show that in addition to destabilizing PER2, Ck1d has another form, one that does the exact opposite.

While structurally very similar, these two kinase forms are named CK1D1 and CK1D2.

"The opposite activity of CK1D2 was completely unexpected. These two versions of this kinase can be likened to the kind Dr Jekyll -- CK1D2 -- and the destroyer Mr Hyde -- CK1D1," states Fustin. "While in many cases the same gene can code for different proteins, such a stark difference in function is rare."

"Circadian clock mechanisms can be found in bacteria, insects, plants, and vertebrates. Understanding these fundamental mechanisms allows us to understand our relationship with the rhythmic environment," concludes co-corresponding author Hitoshi Okamura. "Our discoveries indicate that the circadian clock can be adjusted between these kinases, and provides new targets for the treatment of circadian disorders."
-end-
The paper "Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock" appeared 21 May 2018 in Proceedings of the National Academy of Sciences of the United States of America, with doi: 10.1073/pnas.1721371115; it is accompanied by a second paper "CK1δ/ε protein kinase primes the PER2 circadian phosphoswitch" appearing in the same journal (10.1073/pnas.1721076115). These discoveries were made jointly with a team from Duke-NUS Medical School in Singapore, led by David M Virshup.

About Kyoto University

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Kyoto University

Related Circadian Clock Articles:

How circadian clocks communicate with each other
Multiple biological clocks control the daily rhythms of physiology and behavior in animals and humans.
Circadian clock changes can alter body's response to diet
Changing the circadian clock in mouse liver can alter how the body responds to diet and also change the microbes living in the digestive track.
Red and violet light reset the circadian clock in algae via novel pathway
A Nagoya University-led team uncovered a pathway in the alga Chlamydomonas reinhardtii that resets its circadian clock on exposure to red or violet light.
TSRI researchers show how circadian 'clock' may influence cancer pathway
A new study led by scientists at The Scripps Research Institute describes an unexpected role for proteins involved with our daily 'circadian' clocks in influencing cancer growth.
Powering up the circadian rhythm
Salk team first to discover protein that controls the strength of body's circadian rhythms.
With a broken circadian clock, even a low-salt diet can raise resting blood pressure, promote disease
In the face of a disrupted circadian rhythm, a low-salt diet and a hormone known to constrict blood vessels have the same unhealthy result: elevated resting blood pressure and vascular disease, scientists report.
Bacteria engineered with synthetic circadian clocks
Many of the body's processes follow a natural daily rhythm or so-called circadian clock, so there are certain times of the day when a person is most alert, when the heart is most efficient, and when the body prefers sleep.
New research helps to explain how temperature shifts the circadian clock
One important aspect of the internal time-keeping system continues to perplex scientists: its complex response to temperature, which can shift the clock forward or backward, but cannot change its 24-hour period.
Circadian clock controls insulin and blood sugar in pancreas
A new Northwestern Medicine study has pinpointed thousands of genetic pathways an internal body clock takes to dictate how and when our pancreas must produce insulin and control blood sugar, findings that could eventually lead to new therapies for children and adults with diabetes.
Uncovering the secrets of sleep and circadian rhythms
Our circadian rhythms tell us when it's time to sleep and energize us at different times of the day; evidence suggests it also plays a role in the development of diseases such as cancer.

Related Circadian Clock Reading:

The Circadian Code: Lose Weight, Supercharge Your Energy, and Transform Your Health from Morning to Midnight
by Satchin Panda PhD (Author)

Change Your Schedule, Change Your Life: How to Harness the Power of Clock Genes to Lose Weight, Optimize Your Workout, and Finally Get a Good Night's Sleep
by Dr. Suhas Kshirsagar (Author), Michelle D. Seaton (Author), Deepak Chopra (Foreword)

Circadian Clocks: Role in Health and Disease (Physiology in Health and Disease)
by Michelle L. Gumz (Editor)

Circadian
by Chelsey Clammer (Author)

Summary & Analysis of The Circadian Code: Lose Weight, Supercharge Your Energy, and Transform Your Health from Morning to Midnight | A Guide to the Book by Satchin Panda
by ZIP Reads

The Women's Health Body Clock Diet: The 6-Week Plan to Reboot Your Metabolism and Lose Weight Naturally
by Editors of Women's Health (Author)

Circadian Rhythms: A Very Short Introduction (Very Short Introductions)
by Russell Foster (Author), Leon Kreitzman (Author)

Biological Clocks, Rhythms, and Oscillations: The Theory of Biological Timekeeping (The MIT Press)
by Daniel B. Forger (Author)

Circadian Clocks (Handbook of Experimental Pharmacology)
by Achim Kramer (Editor), Martha Merrow (Editor)

The Clocks That Time Us: Physiology of the Circadian Timing System (Commonwealth Fund Publications)
by Martin C. Moore-Ede (Author), Frank M. Sulzman (Author), Charles A. Fuller (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...