Nav: Home

Bubbles and whispers -- glass bubbles boost nanoparticle detection

July 11, 2018

Technology created by researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) is literally shedding light on some of the smallest particles to detect their presence - and it's made from tiny glass bubbles.

The technology has its roots in a peculiar physical phenomenon known as the "whispering gallery," described by physicist Lord Rayleigh (John William Strutt) in 1878 and named after an acoustic effect inside the dome of St Paul's Cathedral in London. Whispers made at one side of the circular gallery could be heard clearly at the opposite side. It happens because sound waves travel along the walls of the dome to the other side, and this effect can be replicated by light in a tiny glass sphere just a hair's breadth wide called a Whispering Gallery Resonator (WGR).

When light is shined into the sphere, it bounces around and around the inner surface, creating an optical carousel. Photons bouncing along the interior of the tiny sphere can end up travelling for long distances, sometimes as far as 100 meters. But each time a photon bounces off the sphere's surface, a small amount of light escapes. This leaking light creates a sort of aura around the sphere, known as an evanescent light field. When nanoparticles come within range of this field, they distort its wavelength, effectively changing its color. Monitoring these color changes allows scientists to use the WGRs as a sensor; previous research groups have used them to detect individual virus particles in solution, for example. But at OIST's Light-Matter Interactions Unit, scientists saw they could improve on previous work and create even more sensitive designs. The study is published in Optica.

Today, Dr. Jonathan Ward is using WGRs to detect minute particles more efficiently than ever before. The WGRs they have made are hollow glass bubbles rather than balls, explains Dr. Ward. "We heated a small glass tube with a laser and had air blown down it - it's a lot like traditional glass blowing". Blowing the air down the heated glass tube creates a spherical chamber that can support the sensitive light field. The most noticeable difference between a blown glass ornament and these precision instruments is the scale: the glass bubbles can be as small as 100 microns- a fraction of a millimeter in width. Their size makes them fragile to handle, but also malleable.

Working from theoretical models, Dr. Ward showed that they could increase the size of the light field by using a thin spherical shell (a bubble, in other words) instead of a solid sphere. A bigger field would increase the range in which particles can be detected, increasing the efficacy of the sensor. "We knew we had the techniques and the materials to fabricate the resonator", said Dr. Ward. "Next we had to demonstrate that it could outperform the current types used for particle detection".

To prove their concept, the team came up with a relatively simple test. The new bubble design was filled with a liquid solution containing tiny particles of polystyrene, and light was shined along a glass filament to generate a light field in its liquid interior. As particles passed within range of the light field, they produced noticeable shifts in the wavelength that were much more pronounced than those seen with a standard spherical WGR.

With a more effective tool now at their disposal, the next challenge for the team is to find applications for it. Learning what changes different materials make to the light field would allow Dr Ward to identify and target them, and even control their activity.

Despite their fragility, these new versions of WGRs are easy to manufacture and can be safely transported in custom made cases. That means these sensors could be used in a wide verity of fields, such as testing for toxic molecules in water to detect pollution, or detecting blood borne viruses in extremely rural areas where healthcare may be limited.

For Dr. Ward however, there's always room from improvement: "We're always pushing to get even more sensitivity and find the smallest particle this sensor can detect. We want to push our detection to the physical limits."
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Technology Articles:

How technology use affects at-risk adolescents
More use of technology led to increases in attention, behavior and self-regulation problems over time for adolescents already at risk for mental health issues, a new study from Duke University finds.
Hold-up in ventures for technology transfer
The transfer of technology brings ideas closer to commercialization. The transformation happens in several steps, such as invention, innovation, building prototypes, production, market introduction, market expansion, after sales services.
The ultimate green technology
Imagine patterning and visualizing silicon at the atomic level, something which, if done successfully, will revolutionize the quantum and classical computing industry.
New technology detects COPD in minutes
Pioneering research by Professor Paul Lewis of Swansea University's Medical School into one of the most common lung diseases in the UK, Chronic Obstructive Pulmonary Disease, has led to the development of a new technology that can quickly and easily diagnose and monitor the condition.
New technology for powder metallurgy
Tecnalia leads EFFIPRO (Energy EFFIcient PROcess of Engineering Materials) project, which shows a new manufacturing process using powder metallurgy.
New milestone in printed photovoltaic technology
A team of researchers at Friedrich-Alexander-Universit├Ąt have achieved an important milestone in the quest to develop efficient solar technology as an alternative to fossil fuels.
Gene Drive Technology: Where is the future?
For this episode of BioScience Talks, we're joined by Gene Drive Committee co-chair James P.
Could Hollywood technology help your health?
The same technology used by the entertainment industry to animate characters such as Gollum in 'The Lord of The Rings' films, will be used to help train elite athletes, for medical diagnosis and even to help improve prosthetic limb development, in a new research center at the University of Bath launched today.
Assessing carbon capture technology
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change.
New technology for dynamic projection mapping
It has been thought technically difficult to achieve projection mapping onto a moving/rotating object so that images look as though they are fixed to the object.

Related Technology Reading:

Soonish: Ten Emerging Technologies That'll Improve and/or Ruin Everything
by Kelly Weinersmith (Author), Zach Weinersmith (Author)

Irresistible: The Rise of Addictive Technology and the Business of Keeping Us Hooked
by Adam Alter (Author)

Rise of the Robots: Technology and the Threat of a Jobless Future
by Martin Ford (Author)

Information Technology Project Management
by Kathy Schwalbe (Author)

Technology: A World History (New Oxford World History)
by Daniel R. Headrick (Author)

Information Technology for Management: Digital Strategies for Insight, Action, and Sustainable Performance
by Efraim Turban (Author), Carol Pollard (Author), Gregory Wood (Author)

Engineering: An Illustrated History from Ancient Craft to Modern Technology (100 Ponderables)
by Tom Jackson (Editor) (Author), Tom Jackson (Editor)

Plato and the Nerd: The Creative Partnership of Humans and Technology (The MIT Press)
by Edward Ashford Lee (Author)

Technology: A Reader for Writers
by Johannah Rodgers (Author)

The Technology Tail: A Digital Footprint Story (Communicate with Confidence)
by Julia Cook (Author), Anita DuFalla (Illustrator)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...