Nav: Home

High-fidelity quantum secret sharing prevents eavesdropping

July 11, 2018

To protect the confidentiality of a message during its transmission, people encrypt it. However, noise in the transmission channels can be a source of concern regarding how faithful the message transmission may be after it has been decrypted. This is particularly important for secrets shared using quantum scale messengers. For example, a classical secret takes the shape of a string of zeros and ones, whereas a quantum secret is akin to an unknown quantum state of two entangled particles carrying the secret. This is because no two quantum particles can be in the same state at any given time. In a new study published in EPJ D, Chen-Ming Bai from Shaanxi Normal University, Xi'an, China, and colleagues calculate the degree of fidelity of the quantum secret once transmitted and explore how to avoid eavesdropping.

What is exciting about quantum secrets is that they make it possible to share a secret among a number of participants. Yet, only certain participants can reconstruct the secret by collaborating. Creating a permission system to decide who can access the secret requires the development of a specific procedure. In this study, the authors provide a concrete example of how such an approach could work with three participants.

Since noise in the transmission channel has a great influence on the quantum secret shared, the authors analyse the impacts of two kinds of noisy channels on sharing quantum secrets. Indeed, the quantum system inevitably interacts with the external environment to produce quantum noise, which leads to entanglement between the quantum state and the environment.

In particular, the authors evaluate the consequences of quantum noise and the resulting degree of damping of the encrypted signal by examining its physical characteristics, like its amplitude. This helps determine how faithfully the secret has been transmitted to the receiver. Bai and colleagues find that the fidelity of the encrypted message's transmission improves depending on the quantum state in which the particles carrying the secret find themselves. The authors subsequently provide an optimised strategy to enhance fidelity in secret transmission.
-end-
References: C.M. Bai, Z.H. Li; and Y.M. Li (2018) ), Improving fidelity of quantum secret sharing in noisy environments, European Physical Journal D 72: 126, DOI: 10.1140/epjd/e2018-90055-5

Springer

Related Quantum State Articles:

Quantum nanoscope
Researchers have studied how light can be used to 'see' the quantum nature of an electronic material.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Looking for the quantum frontier
Researchers have developed a new theoretical framework to identify computations that occupy the 'quantum frontier' -- the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer.
Research reveals novel quantum state in strange insulating materials
Experiments show how electrons in Mott insulators with strong spin-orbit coupling arrange themselves to make the materials magnetic at low temperatures.
Quantum simulation technique yields topological soliton state in SSH model
Using atomic quantum-simulation, an experimental technique involving finely tuned lasers and ultracold atoms about a billion times colder than room temperature to replicate the properties of a topological insulator, a team of researchers at the University of Illinois at Urbana-Champaign has directly observed for the first time the protected boundary state of the topological insulator trans-polyacetylene.
More Quantum State News and Quantum State Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...