Nav: Home

Enzyme discovery could help in fight against TB

July 11, 2018

Research by a team led by Dr Elizabeth Fullam, has revealed new findings about an enzyme found in Mycobacterium tuberculosis (Mtb) the bacterium that causes TB.

TB causes more deaths than any other infectious disease, including from HIV and malaria. In 2016 there were 10.4 million new cases of TB and 1.7 million people died. The rise in cases of TB that are resistant to the current therapies that are available means that there is an urgent need to develop new TB therapeutics.

Mtb is a highly unique bacterium and is enclosed within a distinctive cell wall that is comprised of unusual sugars and lipids which protect the bacteria from the host environment. Disruption of essential pathways involved in the assembly of the Mtb cell wall is an attractive approach for new TB drugs.

The team found a key structural motif in the tuberculosis N-acetylglucosamine-6-phosphate deacetylase (NagA) enzyme. Attacking this structural motif through the design and exploitation of new molecules will enable scientists to inhibit this critical pathway and kill TB.

Using the X-ray facilities at the Diamond Light Source, Harwell, they were provided with detailed molecular insights into how the NagA enzyme generates important precursors that are involved in Mtb cell wall biosynthesis and metabolism.

Dr Fullam, who is a Sir Henry Dale Fellow at the University of Warwick's School of Life Sciences, said: "Tuberculosis is a major global health problem and the current drugs that we use today are over 40 years old. It is therefore vital that we discover new therapeutic agents to combat TB. In our studies, we have investigated the role of an enzyme in Mtb called NagA. This enzyme is a promising drug target as it is at a crucial metabolic chokepoint in Mtb. This means that a molecule that stops the enzyme from working would be an effective strategy for a drug and therefore it is critical to understand its function.

"Our group has identified a weak point within this protein that we can target and will now enable us to design specific molecules to block its function"

Using a range of biochemical and biophysical checks to determine the substrate specificity for the Mtb NagA enzyme they found a unique structural feauture in the Mtb NagA enzyme.This has revealed a molecular image of the protein and provides a platform to allow scientists to design new drugs that will hopefully inhibit this vital pathway and kill TB.

The research 'Structural and functional determination of homologs of the Mycobacterium tuberculosis N-acetylglucosamine-6-phosphate deacetylase (NagA)' is published in the Journal of Biological Chemistry
-end-
For more information contact Nicola Jones, Media Relations Manager, University of Warwick N.Jones.1@warwick.ac.uk or 07920531221

Photo caption1 NagA protein crystals

Notes to Editors

Structural and functional determination of homologs of the Mycobacterium tuberculosis N-acetylglucosamine-6-phosphate deacetylase (NagA)' is published in the Journal of Biological Chemistry

DOI.1074/jbc.RA118.002597

Authors

Mohd Syed Ahangar, School of Life Sciences, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom
Christopher M. Furze, School of Life Sciences, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom
Collette S. Guy, School of Life Sciences, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom; Department of Chemistry, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom
Charlotte Cooper, School of Life Sciences, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom
Kathryn S. Maskew, School of Life Sciences, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom
Ben Graham, Department of Chemistry, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom
Alexander D. Cameron, School of Life Sciences
Elizabeth Fullam, School of Life Sciences, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom

Funding

This work was supported by a Sir Henry Dale Fellowship (to E. F.) jointly funded by the Wellcome Trust and Royal Society Grant 104193/Z/14/Z, Wellcome Trust Grant 201442/Z/16/Z (to E. F.), Royal Society Research Grant RG120405 (to E. F.), and Wellcome Warwick Quantitative Biomedicine Programme Institution Strategic Support Fund Seed Grant 105627/Z/14/Z; a Midlands Doctoral Training Partnership Studentship BB/M01116X/ 1 (to C. C.); this work was also supported in part by Warwick Integrative Synthetic Biology research technology platform (Grant BB/M017982/1)

You have received this email because the University of Warwick Press and Media Relations team believes its content is of interest and relevance to you as a member of the media.

We are committed to keeping your personal information safe and secure. Full details on how we use your personal data are given in our privacy notice.

If you would prefer not to be contacted by members of the Press and Media Relations team about news we believe is of professional interest to you, please email press@warwick.ac.uk to let us know.

University of Warwick

Related Tuberculosis Articles:

Blocking the iron transport could stop tuberculosis
The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply.
Tuberculosis: New insights into the pathogen
Researchers at the University of Würzburg and the Spanish Cancer Research Centre have gained new insights into the pathogen that causes tuberculosis.
Unmasking the hidden burden of tuberculosis in Mozambique
The real burden of tuberculosis is probably higher than estimated, according to a study on samples from autopsies performed in a Mozambican hospital.
HIV/tuberculosis co-infection: Tunneling towards better diagnosis
1.2 million people in the world are co-infected by the bacteria which causes tuberculosis and AIDS.
Reducing the burden of tuberculosis treatment
A research team led by MIT has developed a device that can lodge in the stomach and deliver antibiotics to treat tuberculosis, which they hope will make it easier to cure more patients and reduce health care costs.
Tuberculosis: Commandeering a bacterial 'suicide' mechanism
The bacteria responsible for tuberculosis can be killed by a toxin they produce unless it is neutralized by an antidote protein.
A copper bullet for tuberculosis
Tuberculosis is a sneaky disease, and the number one cause of death from infectious disease worldwide.
How damaging immune cells develop during tuberculosis
Insights into how harmful white blood cells form during tuberculosis infection point to novel targets for pharmacological interventions, according to a study published in the open-access journal PLOS Pathogens by Valentina Guerrini and Maria Laura Gennaro of Rutgers New Jersey Medical School, and colleagues.
How many people die from tuberculosis every year?
The estimates for global tuberculosis deaths by the World Health Organisation (WHO) and the Institute for Health Metrics and Evaluation (IHME) differ considerably for a dozen countries, according to a study led by ISGlobal.
Beyond killing tuberculosis
Historically, our view of host defense against infection was that we must eliminate pathogens to eradicate disease.
More Tuberculosis News and Tuberculosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.