Nav: Home

Dodder genome sequencing sheds light on evolution of plant parasitism

July 11, 2018

Most plants absorb sunlight and CO2 with their leaves, take up water and minerals from the soil through roots, and are fully autotrophic. However, parasitic plants are a special class of plants that extract water and nutrients from other plants.

The origin and evolution of plant parasitism as well as the specific physiology and ecology of parasitic plants are very interesting topics and much remains to be studied.

Dodders (Cuscuta spp., Convolvulaceae) are globally distributed holoparasites (i.e., they conduct no or very little photosynthesis), and they are root- and leafless. In recent years, dodders have become an important model for studying parasitic plants (Figure).

To gain insight into the evolution of dodders, and provide important resources for studying the physiology and ecology of parasitic plants, the laboratory of Dr. WU Jianqiang from the Kunming Institute of Botany, Chinese Academy of Sciences, combined PacBio sequencing and Illumina transcriptome sequencing technology to obtain a high-quality genome of the dodder Cuscuta australis.

WU's lab further performed comparative genomic and molecular evolutionary analyses on the C. australis genome. The researchers detected an intriguing pattern of genome evolution in this parasite.

Using genome-wide phylogenetic analysis and synteny information, they found that the ancestor of Cuscuta split from the common ancestor of Cuscuta and Ipomoea 750 million years ago and the common ancestor experienced a genome triplication event. The Cuscuta genome then rapidly evolved and many genes were lost during evolution.

The scientists developed a strict and precise bioinformatic pipeline to screen for the lost genes in the C. australis genome. They found that about 11.7% of the well-conserved genes in autotrophic plants do not exist in the C. australis genome, and many of the missing genes are important for photosynthesis, functions of root and leaf, resistance to environmental stresses, and regulation of transcription.

Interestingly, several genes critical for flowering time control are also missing, such as FLC, FRI, SVP, AGL17, and CO. The gene loss is correlated with the major body plan changes in the dodder.

The scientists also studied possible genes related to the evolution of the haustorium, a parasite-specific organ. They found that about 1/3 of highly expressed genes in the haustorium are also strongly expressed in the roots of autotrophic plants.

Evidence from transcriptomic data, positive selection, and gene families with expanded members indicate that a number of genes are possibly involved in haustorium formation, including a pectin esterase, a serine carboxypeptidase, and transporters, as well as novel genes with unknown functions.
-end-
This study, entitled "Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis," was published in Nature Communications.

Chinese Academy of Sciences Headquarters

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Why Evolution Is True
by Jerry A. Coyne (Author)

Evolution
by Douglas J. Futuyma (Author), Mark Kirkpatrick (Author)

Evolution: A Visual Record
by Robert Clark (Author)

Evolution: The Human Story, 2nd Edition
by Dr. Alice Roberts (Author)

Evolution (Second Edition)
by Carl T. Bergstrom (Author), Lee Alan Dugatkin (Author)

Evolution: Making Sense of Life
by Carl Zimmer (Author), Douglas J. Emlen (Author)

Evolution: The Cutting-Edge Guide to Breaking Down Mental Walls and Building the Body You've Always Wanted
by Joe Manganiello (Author)

Evolutions: Fifteen Myths That Explain Our World
by Oren Harman (Author)

Improbable Destinies: Fate, Chance, and the Future of Evolution
by Jonathan B. Losos (Author)

Evolution: The Human Story
by DK Publishing (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...