Nav: Home

New study in electric fish reveals brain mechanisms for distinguishing self from other

July 11, 2018

NEW YORK -- The brain's remarkable ability to perceive the outside world relies almost entirely on its capacity to tune out noise generated by the body's own actions, according to a first-of-its-kind study in electric fish led by scientists at Columbia University.

This noise-cancellation mechanism is so critical, the study found, that without it, the animals lost their ability to sense their surroundings -- effectively rendering them blind to the world around them. These findings may help researchers better understand disorders such as tinnitus, the chronic and potentially debilitating ringing of the ears that may be due in part to disruptions in the brain's ability to cancel out self-generated sounds.

This research was published today in Neuron.

"At its most fundamental, the brain's purpose is to create an accurate and stable representation of the world around us, and we've long hypothesized that this noise-cancellation mechanism played a part in that," said Nathaniel Sawtell, PhD, a principal investigator at Columbia's Mortimer B. Zuckerman Mind Brain Behavior Institute and the paper's senior author. "With today's study, we offer direct evidence that this mechanism is essential to improve and enhance the brain's ability to sense its surroundings."

How the brain correctly perceives and reacts to the vast array of sensory stimuli from the outside world -- without blurring them with those created by the body's own actions -- has long been a subject of intense study. Previous work by Dr. Sawtell in electric fish and mice revealed how the brain cancels out predictable sensory information, generated by the animals' own bodies, that conveys no useful information.

"The brain is constantly receiving both sensory information along with internal signals related to an animal's own behavior. Those internal signals act as a sort of ID tag, cluing the brain into which components are self-generated and which are not," said Dr. Sawtell, who is also an associate professor of neuroscience at Columbia University Irving Medical Center (CUIMC). "Over time, those internal signals form what is called a 'negative image' in the brain. This acts as a kind of subtraction mechanism, allowing animal to focus on behaviorally important, signals coming in from the outside world."

With today's study, the researchers examined in greater detail how creating this negative image impacts the animal's overall sensory experience. To do so, they focused on the elephant-nose fish, a fish from Africa that both generates electricity to communicate and sense its environment.

"These fish interact with the world by generating electricity, and then use that electricity to locate prey or to communicate with other fish," said Dr. Sawtell. "In the lab, we can study this characteristic as a model for how other animals, including humans, sense their surroundings."

For this study, the researchers recorded electrical activity in a specific class of neurons where negative images are generated. By doing so, the team found that these neurons were only capable of responding to external signals after the negative images had formed.

In a second set of experiments, they interfered with the animals' noise-cancellation mechanism, and monitored the difference in the animals' sensory abilities. The changes were striking.

"The fish could no longer distinguish between electrical signals generated by their environment and the signals generated by their own actions," said Dr. Sawtell. "This means they were essentially blind to their surroundings at the most basic level."

Experts had long suspected that the negative images created by the brain served such a purpose, but directly testing the idea has proven challenging. Electric fish represent an ideal system for making detailed links between the properties of neural circuits and their behavioral function.

"This neural circuit is unusual because so much is known about its physiology and function, but its direct role in behavior had never previously been verified," said the paper's co-author Larry Abbott, PhD, also a principal investigator at Columbia's Zuckerman Institute and the William Bloor Professor of Theoretical Neuroscience and Professor of Physiology and Cellular Biophysics (in Biological Sciences) at CUIMC. "This paper describes an elegant series of experiments showing that the computations being performed in this particular neural circuit are essential for the fish's ability to navigate their surroundings."

The scientists will continue efforts to build a model of how our own brains accomplish this same feat. Their work also lends insight into what happens when the system gets disrupted.

"One example of this is tinnitus, which causes a ringing of the ears and which may begin in the dorsal cochlear nucleus -- a brain region we study in mice and that has striking similarities to the human equivalent in a brain region called the cerebellum," said Dr. Sawtell. "What we learn in electric fish is likely to be relevant for understanding how the human brain distinguishes self from other."
This paper is titled: "Internally-generated predictions enhance neural and behavioral detection of sensory stimuli in an electric fish." Additional contributors include first author Armen Enikolopv.

This research was supported by the National Science Foundation (1025849; NeuroNex Award DB1-1707398) the National Institutes of Health (NS075023), the Irma T. Hirschl Trust, the Simons and Swartz Foundations.

The authors report no financial or other conflicts of interest.

Columbia University's Mortimer B. Zuckerman Mind Brain Behavior Institute brings together a group of world-class scientists and scholars to pursue the most urgent and exciting challenge of our time: understanding the brain and mind. A deeper understanding of the brain promises to transform human health and society. From effective treatments for disorders like Alzheimer's, Parkinson's, depression and autism to advances in fields as fundamental as computer science, economics, law, the arts and social policy, the potential for humanity is staggering. To learn more, visit:

The Zuckerman Institute at Columbia University

Related Brain Articles:

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
Is whole-brain radiation still best for brain metastases from small-cell lung cancer?
University of Colorado Cancer Center study compares outcomes of 5,752 small-cell lung cancer patients who received whole-brain radiation therapy (WBRT) with those of 200 patients who received stereotactic radiosurgery (SRS), finding that the median overall survival was actually longer with SRS (10.8 months with SRS versus 7.1 months with WBRT).
Atlas of brain blood vessels provides fresh clues to brain diseases
Even though diseases of the brain vasculature are some of the most common causes of death in the West, knowledge of these blood vessels is limited.
Brain sciences researcher pinpoints brain circuit that triggers fear relapse
Steve Maren, the Claude H. Everett Jr. '47 Chair of Liberal Arts professor in the Department of Psychological and Brain Sciences at Texas A&M University, and his Emotion and Memory Systems Laboratory (EMSL) have made a breakthrough discovery in the process of fear relapse.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.