Nav: Home

NASA surveys hurricane damage to Puerto Rico's forests

July 11, 2018

On Sept. 20, 2017, Hurricane Maria barreled across Puerto Rico with winds of up to 155 miles per hour and battering rain that flooded towns, knocked out communications networks and destroyed the power grid. In the rugged central mountains and the lush northeast, Maria unleashed its fury as fierce winds completely defoliated the tropical forests and broke and uprooted trees. Heavy rainfall triggered thousands of landslides that mowed over swaths of steep mountainsides.

In April a team of NASA scientists traveled to Puerto Rico with airborne instrumentation to survey damages from Hurricane Maria to the island's forests.

"From the air, the scope of the hurricane's damages was startling," said NASA Earth scientist Bruce Cook, who led the campaign. "The dense, interlocking canopies that blanketed the island before the storm were reduced to a tangle of downed trees and isolated survivors, stripped of their branches."

NASA's Earth-observing satellites monitor the world's forests to detect seasonal changes in vegetation cover or abrupt forest losses from deforestation, but at spatial and time scales that are too coarse to see changes. To get a more detailed look, NASA flew an airborne instrument called Goddard's Lidar, Hyperspectral and Thermal Imager, or G-LiHT. From the belly of a small aircraft flying one thousand feet above the trees, G-LiHT collected multiple measurements of forests across the island, including high-resolution photographs, surface temperatures and the heights and structure of the vegetation.

The U.S. Forest Service, the U.S. Fish and Wildlife Service, the Federal Emergency Management Agency and NASA provided funding for the airborne campaign.

The team flew many of the same tracks with G-LiHT as it had in the spring of 2017, months before Hurricane Maria made landfall, as part of a study of how tropical forests regrow on abandoned agricultural land. The before-and-after comparison shows forests across the island still reeling from the hurricane's impact.

Using lidar, a ranging system that fires 600,000 laser pulses per second, the team measured changes in the height and structure of the Puerto Rican forests. The damage is palpable. Forests near the city of Arecibo on the northern side of the island grow on limestone hills with little soil to stabilize trees. As a result, the hurricane snapped or uprooted 60 percent of the trees there. In the northeast, on the slopes of El Yunque National Forest, the hurricane trimmed the forests, reducing their average height by one-third.

Data from G-LiHT is not only being used to capture the condition of the island's forests; it is an important research tool for scientists who are tracking how the forests are changing as they recover from such a major event.

"[Hurricane] Maria pressed the reset button on many of the different processes that develop forests over time," said Doug Morton, an Earth scientist at NASA's Goddard Spaceflight Center and G-LiHT co-investigator. "Now we're watching a lot of those processes in fast-forward speeds as large areas of the island are recovering, with surviving trees and new seedlings basking in full sunlight."

Among the areas that the team flew over extensively was El Yunque National Forest, which Hurricane Maria struck at full force. The U.S. Forest Service manages El Yunque, a tropical rainforest, as well as its designated research plots, which were established in the late 1930s. University and government scientists perform all manner of research, including measuring individual trees to track their growth, counting flowers and seeds to monitor reproduction, and analyzing soil samples to track the nutrients needed for plant growth.

One important assessment of a tree's health is its crown, which comprises the overall shape of a treetop, with its branches, stems and leaves. Hurricane winds can heavily damage tree crowns and drastically reduce the number of leaves for creating energy through photosynthesis.

"Just seven months after the storm, surviving trees are flushing new leaves and regrowing branches in order to regain their ability to harvest sunlight through photosynthesis," Morton said, while also noting that the survival of damaged trees in the years ahead is an open question.

While it's difficult to assess tree crowns in detail from the ground, from the air G-LiHT's lidar instrument can derive the shape and structure of all of the trees in its flight path. The airborne campaign over Puerto Rico was extensive enough to provide information on the structure and composition of the overall forest canopy, opening up a range of research possibilities.

"Severe storms like Maria will favor some species and destroy others," said Maria Uriarte, an ecologist at Columbia University who has studied El Yunque National Forest for 15 years and is working with the NASA team to validate flight data with ground observations. "Plot level studies tell us how this plays out in a small area but the damage at any particular place depends on proximity to the storm's track, topography, soils and the characteristics of each forest patch. This makes it hard to generalize to other forests in the island."

But with G-LiHT data scientists can study the storm impacts over a much larger area, Uriarte continued. "What's really exciting is that we can ask a completely different set of questions," she said. "Why does one area have more damage than others? What species are being affected the most across the island?"

Understanding the state of the forest canopy also has far-reaching implications for the rest of the ecosystem, as tree cover is critical to the survival of many species. For example, birds such as the native Iguaca parrot use the canopy to hide from predator hawks. The canopy also creates a cooler, humid environment that is conducive to the growth of tree seedlings and lizards and frogs that inhabit the forest floor. Streams that are cooled by the dense shade also make them habitable for a wide diversity of other organisms.

Yet by that same token, other plants and animals that were once at a disadvantage are now benefiting from changes brought about by the loss of canopy.

"Some lizards live in the canopy, where they thrive in drier, more sunlit conditions," said herpetologist Neftali Ríos-López, an associate professor at the University of Puerto Rico-Humacao Campus. "Because of the hurricane those drier conditions that were once exclusive to the canopy are now extended down to the forest floor. As a result, those animals are better adapted to those conditions and have started displacing and substituting animals that are adapted to the once cooler conditions."

"Who are the winners and losers in this new environment? That's an important question in all of this," said NASA's Doug Morton. During the airborne campaign, he spent several days in the research plots of El Yunque taking three-dimensional images of the forest floor to complement the data from G-LiHT. He said it's clear that the palms, which weathered the hurricane winds better than other broad-leafed trees, are among the current beneficiaries of the now sun-drenched forest. And that's not a bad thing.

"Palm trees are going to form a major component of the canopy of this forest for the next decade or more, and in some ways they'll help to facilitate the recovery of the rest of this forest," Morton said. "Palms provide a little bit of shade and protection for the flora and fauna that are recolonizing the area. That's encouraging."

The implications of this research extend beyond the forest ecosystem, both in time and space, said Grizelle Gonzalez, a research ecologist with the U.S. Forest Service and project lead for the research plots in El Yunque. As an example, she pointed out that the hurricane caused the mountain streams to flood and fill with sediment that ultimately flowed into the ocean. Sediment can negatively impact the quality of the drinking water as well as the coral communities that fisheries depend on for both subsistence and commerce.

"It's beautiful to see that so many federal agencies came together to collaborate on this important work because forests play a key role in everything from biodiversity and the economy to public health," Gonzalez said.

G-LiHT data also has global implications. In July, the team heads to Alaska to continue surveying the vast forestland in the state's interior to better understand the impacts of accelerated Arctic warming on boreal forests, which, in turn, play a key role in cooling Earth's climate by sequestering carbon from the atmosphere. "G-LiHT allows us to collect research data at the scale of individual trees across broad landscapes," Morton said. "Forests from Alaska to Puerto Rico are constantly changing in response to climate warming and disturbances such as fire and hurricanes."
-end-
For more information on G-LiHT, see:

https://gliht.gsfc.nasa.gov

NASA/Goddard Space Flight Center

Related Hurricane Articles:

2017 hurricane season follows year of extremes
2016 hurricane season started in January and ended 318 days later in late-November.
Study Offers New Insight on Hurricane Intensification
In a new study, researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science showed the first direct observations of hurricane winds warming the ocean surface beneath them due to the interactions with currents from an underlying warm-water whirlpool.
NASA provides a 3-D look at Hurricane Seymour
Hurricane Seymour became a major hurricane on Oct. 25 as the Global Precipitation Measurement mission or GPM core satellite analyzed the storm's very heavy rainfall and provided a 3-D image of the storm's structure.
NASA sees Hurricane Seymour becoming a major hurricane
Hurricane Seymour was strengthening into a major hurricane in the Eastern Pacific Ocean when the NASA-NOAA Suomi NPP satellite passed over it from space.
NASA animation shows Seymour becomes a hurricane
Tropical Depression 20 formed in the Eastern Pacific Ocean on Sunday and by Monday at 11 a.m. it exploded into a hurricane named Seymour.
Hermine becomes a hurricane in the Gulf of Mexico
Tropical Storm Hermine officially reached hurricane status on Thursday, Sept.
NASA spies major Hurricane Georgette
Hurricane Georgette is a major hurricane in the Eastern Pacific Ocean.
NASA peers into major Hurricane Blas
As NASA satellites gather data on the first major hurricane of the Eastern Pacific Ocean hurricane season, Blas continues to hold onto its Category 3 status on the Saffir Simpson Wind Scale.
NASA gets an eyeful of Hurricane Blas
Satellites eyeing powerful Hurricane Blas in the Eastern Pacific Ocean revealed a large eye as the powerful storm continued to move over open waters.
Early use of 'hurricane hunter' data improves hurricane intensity predictions
Data collected via airplane when a hurricane is developing can improve hurricane intensity predictions by up to 15 percent, according to Penn State researchers who have been working with the National Oceanic and Atmospheric Administration and the National Hurricane Center to put the new technique into practice.

Related Hurricane Reading:

In the Hurricane's Eye: The Genius of George Washington and the Victory at Yorktown
by Nathaniel Philbrick (Author)

Whose Boat Is This Boat?: Comments That Don't Help in the Aftermath of a Hurricane
by The Staff of The Late Show with Stephen Colbert (Author)

Hurricane of Love: My Journey with Beth Wheeler
by Dan Wheeler (Author)

Hurricane Heroes in Texas (Magic Tree House (R))
by Mary Pope Osborne (Author), AG Ford (Illustrator)

Hurricanes!
by Gail Gibbons (Author)

Hurricanes
by Seymour Simon (Author)

The Lemonade Hurricane: A Story of Mindfulness and Meditation
by Licia Morelli (Author), Jennifer E. Morris (Illustrator)

Hurricane Season: New from the USA TODAY bestselling author of The Hideaway
by Lauren K. Denton (Author)

DK Eyewitness Books: Hurricane & Tornado: Encounter Nature's Most Extreme Weather Phenomena from Turbulent Twisters to Fie
by Jack Challoner (Author)

Hurricane Season: The Unforgettable Story of the 2017 Houston Astros and the Resilience of a City
by Joe Holley (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#499 Technology, Work and The Future (Rebroadcast)
This week, we're thinking about how rapidly advancing technology will change our future, our work, and our well-being. We speak to Richard and Daniel Susskind about their book "The Future of Professions: How Technology Will Transform the Work of Human Experts" about the impacts technology may have on professional work. And Nicholas Agar comes on to talk about his book "The Sceptical Optimist" and the ways new technologies will affect our perceptions and well-being.