Nav: Home

Reining in soil's nitrogen chemistry

July 11, 2018

Take a trip down into the soil beneath a field of crops. You won't find just dirt, water, and creepy-crawlies. You'll also find reactions that remind you of high school chemistry lab.

Many researchers study the reactions of elements and compounds in the soil, especially because some, like nitrogen, are required by plants to grow. Nitrogen is often added to the soil as a fertilizer. However, not all nitrogen added is usable by plants.

The compound urea is currently the most popular nitrogen soil fertilizer. It's a way to get plants the nitrogen they need to grow. Although the nitrogen in urea is not directly usable by plants, once urea is in the soil it undergoes a chemical reaction that produces ammonium, a nitrogen-rich compound that thus becomes available for plant nutrition. The catalyst responsible for this reaction is an enzyme called urease. This enzyme is produced by microorganisms in the soil.

There's just one problem with urease: it works too well!

"The reactions that urea undergoes are much too fast, because of the action of urease," says Stefano Ciurli. Ciurli is a professor of chemistry at the Department of Pharmacy and Biotechnology of the University of Bologna, Italy. "Urease accelerates the formation of nitrogen-containing compounds that quickly dissipate into the environment instead of being absorbed by plants."

Controlling how fast the urease accelerates the process is important to help plants get as much nitrogen as possible. This is usually done by modifying the urea fertilizer to decrease urease activity. Ciurli and his team study these techniques. They looked to prove if coating the urea fertilizer granules with a specific compound--maleic-itaconic polymers (MIPs)--would help with this. Previous studies had argued that it didn't have an effect.

What they found was that, at some levels of soil acidity, their compound was good at slowing down urease. They found that their compound compared well to another used for this purpose, N-(n-butyl)-thiophosphoric triamide (NBPT). However, this second compound has been shown to have some negative effects on crops in addition to being incorporated in plants and soil organisms.

The research results suggest farmers may have a choice, depending on their soil's acidity.

"For farmers who already use the compound we tested, this study tells them why the chemical is effective," Ciurli says. "Those that have been discouraged from using it because they didn't think it worked can now explore the benefits of it compared to other chemicals available in the market."

What prevents the plants from being able to take up the urea in the first place? What makes a nutrient unavailable to the plant?

"Plants can only absorb nutrients through their roots if the chemical is soluble in the water contained in soil," Ciurli explains. "Plants don't have teeth to chew on soil; they only have roots that can almost passively absorb what 'comes by' them."

In the soil, there can be many forms of nitrogen. Some are gases and are easily lost into the air. Others in the soil can be "sticky" or not sticky. Those that are not sticky, such as nitrates, are easily taken up by plants but also easily washed away from the soil into rivers and lakes. Their abundance there can lead to algal blooms and dead zones.

Ciurli says one of the next steps in their research is carrying out similar studies in the soil, as this study was done in the laboratory.

The work has implications for plants as well as Ciurli's other passion, pharmaceuticals for metal-based biological targets.

"The knowledge of how urease works, at the molecular/atomic level, is a first step to develop urease inhibitors for both agricultural application and also for medical issues," he says. "Urease is the key virulence factor for a series of microorganisms that cause antibiotic resistance, cancer, tuberculosis, plague, and brain diseases. Knowing the chemistry of this enzyme will contribute to the battle of the human race for its survival on this planet."
-end-
Read more about this research in the Soil Science Society of America Journal.

American Society of Agronomy

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Going against the grain -- nitrogen turns out to be hypersociable!
Nitrogen is everywhere: even in the air there is four times as much of it as oxygen.
Soybean nitrogen breakthrough could help feed the world
Washington State University biologist Mechthild Tegeder has developed a way to dramatically increase the yield and quality of soybeans.
Trading farmland for nitrogen protection
Excess nitrogen from agricultural runoff can enter surface waters with devastating effects.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.

Related Nitrogen Reading:

The Story of N: A Social History of the Nitrogen Cycle and the Challenge of Sustainability (Studies in Modern Science, Technology, a)
by Hugh S. Gorman (Author)

The Nitrogen Cycle (Let's Find Out!)
by Bobi Martin (Author)

Nitrogen Fix

The Nitrogen Cycle (Earth's Cycles in Action)
by Diane Dakers (Author)

Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems: Extended versions of papers ... in the Philosophy and History of Science)
by Ladha (Editor)

Liquid Nitrogen and Oxygen Safety - Scholar's Choice Edition
by U.S. Air Force (Creator)

Ruminant Nitrogen Usage
by National Research Council (Author), Board on Agriculture (Author), Committee on Animal Nutrition (Author), Subcommittee on Nitrogen Usage in Ruminants (Author)

The European Nitrogen Assessment: Sources, Effects and Policy Perspectives
by Mark A. Sutton (Editor), Clare M. Howard (Editor), Jan Willem Erisman (Editor), Gilles Billen (Editor), Albert Bleeker (Editor), Peringe Grennfelt (Editor), Hans van Grinsven (Editor), Bruna Grizzetti (Editor)

Enhancing the Efficiency of Nitrogen Utilization in Plants
by Sham S. Goyal (Author), Rudolf Tischner (Author)

Managing Nitrogen in Crop Production
by Peter Scharf (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#503 Postpartum Blues (Rebroadcast)
When a woman gives birth, it seems like everyone wants to know how the baby is doing. What does it weigh? Is it breathing right? Did it cry? But it turns out that, in the United States, we're not doing to great at asking how the mom, who just pushed something the size of a pot roast out of something the size of a Cheerio, is doing. This week we talk to anthropologist Kate Clancy about her postpartum experience and how it is becoming distressingly common, and we speak with Julie Wiebe about prolapse, what it is and how it's...