Nav: Home

Study charts the landscape of mosaic chromosomal alterations in blood cells

July 11, 2018

It's a common occurrence in elderly people: Blood cells carrying mutated DNA explosively increase in number, resulting in genetic "mosaicism": the presence of a population of cells that carries an altered genome. This phenomenon, known as clonal hematopoiesis, is associated with a substantially increased risk of blood cancer. However, most people with clonal hematopoiesis do not go on to develop blood cancers, and the causes and effects of clonal hematopoiesis are poorly understood.

A study by investigators from Brigham and Women's Hospital, Harvard and the Broad Institute developed a new technique for detecting a type of clonal hematopoiesis known as mosaic chromosomal alterations, which involve mutations that affect large chunks of chromosomes. The team compiled an atlas of 8,342 mosaic chromosomal alterations, an order of magnitude larger than any previous study. Results are published this week in Nature.

"Our findings refine the link between mosaicism and blood cancer risk," said Po-Ru Loh, PhD, of the Center for Data Sciences and the Division of Genetics at BWH. "While this work is still upstream of clinical translation, it improves our understanding of the biology of clonal hematopoiesis and suggests promising directions for future work."

The team identified specific mosaic events that drive this increase in risk, observing that duplication of chromosome 12 conferred over a hundred-fold increased risk of chronic lymphocytic leukemia (CLL). However, blood cancers are rare diseases, so despite the large increases in risk, most people with mosaic events will not go on to develop blood cancers - making clinical application challenging. In addition, interventions still need to be developed to prevent high-risk individuals from getting blood cancer.

The team used highly sensitive computational techniques capable of detecting alterations that were present in only a small fraction (less than 1 percent) of blood cells, representing the very early stages of clonal expansion. The technique can be applied to data from genotyping arrays, a cheap and easily available technology for generating large amounts of data from very large sample sizes.

The researchers applied their technique to samples from approximately 150,000 participants in the UK Biobank.

"The large size of this data set allowed us to find many interesting patterns in the data," said Loh. "The biggest surprise was that several subclasses of clonal expansions are actually strongly influenced by inherited genetic variants. That is, certain DNA mutations that are passed along from parents to children strongly increase the likelihood of clonal expansions later in one's life."
-end-
Funding for this work was provided by the National Institutes of Health (R01 HG006399, R01 GM105857, R01 MH101244, R21 HG009513, F32 HG007805, R01 HG006855, UM1 HG008900 and R01 HD081256) a Burroughs Wellcome Fund Career Award at the Scientific Interfaces, the Next Generation Fund at the Broad Institute of MIT and Harvard, the Stanley Center for Psychiatric Research, the Fannie and John Hertz Foundation, the US Department of Defense Breast Cancer Research Breakthrough Awards (W81XWH-16-1-0315, W81XWH-16-1-0316) the Elsa U. Pardee Foundation, NCI MSKCC Cancer Center Core Grant (P30 CA008748), and the Simons Foundation (SFARI Awards #346042 and #385027).

Paper cited: Loh, PR et al. "Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations" Nature DOI: 10.1038/s41586-018-0321-x

Brigham and Women's Hospital

Related Chromosomes Articles:

Andalusian experts indicate new elements responsible for instability in chromosomes
The researchers state that RNA joins with DNA by chance or because of a disease, the structure of the chromatin, the protein envelope of the chromosomes is altered, causing breaks in the DNA.
Reconstruction of ancient chromosomes offers insight into mammalian evolution
Researchers have gone back in time, at least virtually, computationally recreating the chromosomes of the first eutherian mammal, the long-extinct, shrewlike ancestor of all placental mammals.
Newly discovered DNA sequences can protect chromosomes in rotifers
Rotifers are tough, microscopic organisms highly resistant to radiation and repeated cycles of dehydration and rehydration.
For keeping X chromosomes active, chromosome 19 marks the spot
After nearly 40 years of searching, Johns Hopkins researchers report they have identified a part of the human genome that appears to block an RNA responsible for keeping only a single X chromosome active when new female embryos are formed, effectively allowing for the generally lethal activation of more than one X chromosome during development.
Researchers assemble five new synthetic chromosomes
A global research team has built five new synthetic yeast chromosomes, meaning that 30 percent of a key organism's genetic material has now been swapped out for engineered replacements.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Aging and cancer: An enzyme protects chromosomes from oxidative damage
EPFL scientists have identified a protein that caps chromosomes during cell division and protect them from oxidative damage and shortening, which are associated with aging and cancer.
Protective barrier inside chromosomes helps to keep cells healthy
Fresh insights into the structures that contain our genetic material could explain how the body's cells stay healthy.
How human eggs end up with the wrong number of chromosomes
One day before ovulation, human oocytes begin to divide into what will become mature eggs.
Genes versus chromosomes: A battle for expression in fly testes
Unique sex chromosomes occur in many species. An unequal pair of sex chromosomes, each carrying a different complement of genes, requires specific efforts to regulate and balance the expression of sex-chromosomal genes.

Related Chromosomes Reading:

Chromosome Kids Like Me
by Annette Fournier (Author)

Gardner and Sutherland's Chromosome Abnormalities and Genetic Counseling (Oxford Monographs on Medical Genetics)
by R.J. McKinlay Gardner (Author), David J. Amor (Author)

Chromosome 6 (A Medical Thriller)
by Robin Cook (Author)

The Calcutta Chromosome: A Novel of Fevers, Delirium & Discovery
by Amitav Ghosh (Author)

Chromosome Segregation & Structure: Cold Spring Harbor Symposium on Quantitative Biology, Volume LXXXII (Symposium Proceedings)
by Terri Grodzicker (Editor), David Stewart (Editor), Bruce Stillman (Editor)

Chromosomes
by Ashleigh Reynolds (Author)

The Philadelphia Chromosome: A Genetic Mystery, a Lethal Cancer, and the Improbable Invention of a Lifesaving Treatment
by Jessica Wapner (Author), Robert A. Weinberg PhD (Foreword)

Chromosome Abnormalities and Genetic Counseling (Oxford Monographs on Medical Genetics)
by R.J.M McKinlay Gardner (Author), Grant R Sutherland (Author), Lisa G. Shaffer (Author)

Chromosome Y
by Jacques Colombo (Author)

The Y Chromosome
by Leona Gom (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...