Nav: Home

DNA marks in adults tracked back to changes in earliest days of life

July 11, 2018

Scientists have gained a glimpse of how marks on our genes that could be linked to adverse health outcomes in later life behave differently in the first few days after conception, according to new research published in Science Advances.

Some of these marks have been associated with the environment experienced by the developing embryo, including differences in maternal nutrition. The research team, led by scientists at the Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine (LSHTM), say the study is an important step in understanding a mechanism by which the embryo responds to its early environment, with the potential to influence health in later life.

The genes we inherit from our parents are overlaid by a complex set of instructions that govern how they are expressed. These so-called 'epigenetic' marks come in a range of different forms and control many vital processes within cells. For example, every cell in the body contains an identical set of inherited genes, but epigenetic marks ensure that different combinations of genes are switched on or off to make the various cell types, such as muscle, bone and nerves.

The researchers studied specialised regions of the genome (known as metastable epialleles or MEs) where the epigenetic (methylation) marks are laid down in the first few days following conception. As in previous studies, MEs were identified by analysing cells from adults and children, but until now scientists have had no way of understanding how these marks behave in the first few days after conception.

To examine this the researchers used publicly available data from Chinese human embryos, conceived through In vitro fertilisation (IVF). This included measures of DNA methylation from multiple stages during early embryonic development, including sperm and egg cells, and time points where the embryo consists of just a few cells.

The team tracked the patterns of erasure and re-establishment of the DNA marks in the first week of life. They then compared this with methylation patterns in fully-differentiated embryonic liver cells from between six and 10 weeks gestation.

They found that MEs show atypical patterns of establishment in these embryos, compared to other regions on the genome.

In contrast to the great majority of methylation sites across the genome which are either fully methylated or unmethylated in all cells, ME methylation is much more variable in embryonic liver and other differentiated tissues. This suggests that the establishment of methylation at MEs may be sensitive to external environmental factors.

The researchers say that these regions could have evolved to sense the nutritional environment, record the information on DNA and adapt the baby to be best suited to its circumstances.

In addition, the researchers were able to characterise other factors related to the position of MEs within the genome which may provide further clues to explain their unusual behaviour.

Dr Matt Silver, senior author at MRC Unit The Gambia at LSHTM, said: "Previously our work has indicated that epigenetic marks in these regions are associated with differences in maternal nutrition around the time of conception, and several MEs have been linked to important health outcomes in later life, although further work is needed to confirm this.

"Here, for the first time, we've been able to gain insight into how these marks are being established in the early embryo. Our discovery that they behave in a distinctive fashion in the earliest days of life is an important step in understanding how our very early environment might influence our development and future health."

Previous research using an 'experiment of nature' in The Gambia, where dietary patterns vary significantly between rainy and dry seasons, has suggested that methylation patterns at MEs are affected by a mother's (and possibly a father's) nutritional status.

There is also evidence that methylation states at certain MEs are associated with an increased risk of cancers and obesity.

Professor Andrew Prentice, co-author at MRC Unit The Gambia at LSHTM, said: "We cannot alter the genes that we inherit from our parents, but our work suggests we might be able to alter epigenetic patterns that govern how these genes function. The fact that certain epigenetic marks are sensitive to nutrient inputs at the time of conception focusses attention on how crucial it is - for both parents - to eat a healthy and balanced diet before starting a pregnancy.

"These findings also offer the exciting possibility of developing interventions before conception, which might reduce the risk of diseases in the offspring and even in future generations."

More work is now needed to establish which components of a mother's and father's diet and other environmental factors are able to influence DNA methylation patterns in the early embryo, and to better understand how these might link to adverse health outcomes in later life. This will involve further work in cells and further studies in diverse human populations linking diet, epigenetics and health.

The authors acknowledge limitations to their study, including the small number of embryos studied, and the difficulty of gaining a definitive understanding of the extent to which genetic variation can influence DNA methylation at MEs. Furthermore, methylation changes are obtained by analysing methylation in different embryos, each measured at different time points. This is necessary since it is not currently possible to measure methylation changes in the same cells across time.
-end-
The study was funded by the Medical Research Council and the Wellcome Trust.

London School of Hygiene & Tropical Medicine

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

DNA: The Story of the Genetic Revolution
by James D. Watson (Author), Andrew Berry (Author), Kevin Davies (Author)

The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

Move Your DNA: Restore Your Health Through Natural Movement Expanded Edition
by Katy Bowman (Author)

Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past
by David Reich (Author)

The Innovator's DNA: Mastering the Five Skills of Disruptive Innovators
by Jeff Dyer (Author), Hal Gregersen (Author), Clayton M. Christensen (Author)

DNA (Science Readers: Content and Literacy)
by Teacher Created Materials (Author)

DNA: A Graphic Guide to the Molecule that Shook the World
by Israel Rosenfield (Author), Edward Ziff (Author), Borin Van Loon (Author)

The Four: The Hidden DNA of Amazon, Apple, Facebook, and Google
by Scott Galloway (Author)

Rosalind Franklin: The Dark Lady of DNA
by Brenda Maddox (Author)

Cosmic Serpent: DNA and the Origins of Knowledge
by Jeremy Narby (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...