Nav: Home

NIAID dcientists create 3D structure of 1918 influenza virus-like particles

July 11, 2018

WHAT:

Virus-like particles (VLPs) are protein-based structures that mimic viruses and bind to antibodies. Because VLPs are not infectious, they show considerable promise as vaccine platforms for many viral diseases, including influenza. Realizing that fine details about influenza VLPs were scant, a team of researchers who specialize in visualizing molecular structures developed a 3D model based on the 1918 H1 pandemic influenza virus. They say their research, which appears online in Scientific Reports, could benefit VLP vaccine projects, targeting a range of viruses from HIV to Ebola and SARS coronavirus. The research was conducted by scientists at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Other researchers had produced VLPs for 1918 H1 influenza that successfully protected animals from different influenza viruses. The NIAID group prepared hundreds of such VLP samples and analyzed their structure with a technique called cryo-electron microscopy, which quick-freezes samples with glass-like clarity. They then sliced through those VLP 3D structures--like slicing through a loaf of bread--to analyze their internal structure, using computers to document the size and placement of key molecules. After averaging all their data, the group then created a 3D 1918 influenza VLP model.

The scientists found that about 90 percent of the VLPs are hemagglutinin (HA) proteins (by weight) found on the VLP surface. In contrast, HAs comprise less than half of the viral proteins of natural influenza viruses. The number and location of HA molecules may influence the efficacy of VLP vaccines, influencing the binding of antibodies to specific epitopes on the HA protein. Those antibodies can similarly bind live influenza viruses, preventing them from infecting cells.

The research group, in NIAID's Laboratory of Infectious Diseases, is continuing its work by comparing its VLP data to data from other natural influenza viruses. They believe the more that is understood about the molecular organization of influenza VLPs, the better scientists will be able to develop effective seasonal and universal influenza vaccines.
-end-
ARTICLE:

DM McCraw et al. Structural analysis of influenza vaccine virus-like particles reveals a multicomponent organization. Scientific Reports DOI: 10.1038/s41598-018-28700-7 (2018).

WHO:

Audray K. Harris, Ph.D., chief of NIAID's Structural Informatics Unit in the Laboratory of Infectious Diseases, is available to comment about this study.

CONTACT:

To schedule interviews, please contact Ken Pekoc, (301) 402-1663, kpekoc@niaid.nih.gov.

NIAID conducts and supports research--at NIH, throughout the United States, and worldwide--to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health®

NIH/National Institute of Allergy and Infectious Diseases

Related Influenza Articles:

Birds become immune to influenza
An influenza infection in birds gives a good protection against other subtypes of the virus, like a natural vaccination, according to a new study.
Researchers shed new light on influenza detection
Notre Dame Researchers have discovered a way to make influenza visible to the naked eye, by engineering dye molecules to target a specific enzyme of the virus.
Maternal vaccination again influenza associated with protection for infants
How long does the protection from a mother's immunization against influenza during pregnancy last for infants after they are born?
Influenza in the tropics shows variable seasonality
Whilst countries in the tropics and subtropics exhibit diverse patterns of seasonal flu activity, they can be grouped into eight geographical zones to optimise vaccine formulation and delivery timing, according to a study published April 27, 2016 in the open-access journal PLOS ONE.
Influenza viruses can hide from the immune system
Influenza is able to mask itself, so that the virus is not initially detected by our immune system.
Using 'big data' to combat influenza
Team of scientists from the Icahn School of Medicine at Mount Sinai and Sanford Burnham Prebys Medical Discovery Institute among those who combined large genomic and proteomic datasets to identify novel host targets to treat flu.
Rapidly assessing the next influenza pandemic
Influenza pandemics are potentially the most serious natural catastrophes that affect the human population.
Early detection of highly pathogenic influenza viruses
Lack of appropriate drugs and vaccines during the influenza A virus pandemic in 2009, the recent Ebola epidemic in West Africa, as well as the ongoing Middle Eastern Respiratory Syndrome-Coronavirus outbreak demonstrates that the world is only insufficiently prepared for global attacks of emerging infectious diseases and that the handling of such threats remains a great challenge.
Study maps travel of H7 influenza genes
In a new bioinformatics analysis of the H7N9 influenza virus that has recently infected humans in China, researchers trace the separate phylogenetic histories of the virus's genes, giving a frightening new picture of viruses where the genes are traveling independently in the environment, across large geographic distances and between species, to form 'a new constellation of genes -- a new disease, based not only on H7, but other strains of influenza.'
Influenza A potentiates pneumococcal co-infection: New details emerge
Influenza infection can enhance the ability of the bacterium Streptococcus pneumoniae to cause ear and throat infections, according to research published ahead of print in the journal Infection and Immunity.

Related Influenza Reading:

The Great Influenza: The Story of the Deadliest Pandemic in History
by John M. Barry (Author)

Flu: The Story Of The Great Influenza Pandemic of 1918 and the Search for the Virus that Caused It
by Gina Kolata (Author)

Very, Very, Very Dreadful: The Influenza Pandemic of 1918
by Albert Marrin (Author)

Influenza: A Century of Science and Public Health Response
by George Dehner (Author)

The Influenza Pandemic of 1918-1919 (The Bedford Series in History and Culture)
by Susan K. Kent (Author)

America's Forgotten Pandemic: The Influenza of 1918
by Alfred W. Crosby (Author)

Influenza: The Hundred Year Hunt to Cure the Deadliest Disease in History
by Dr Jeremy Brown (Author)

Pale Rider: The Spanish Flu of 1918 and How It Changed the World
by Laura Spinney (Author)

Textbook of Influenza
by Robert G. Webster (Author), Arnold S. Monto (Author), Thomas J. Braciale (Author), Robert A. Lamb (Author)

The Great Influenza: The Epic Story of the Deadliest Plague in History
by John M. Barry (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...