Nav: Home

Why are neuron axons long and spindly? Study shows they're optimizing signaling efficiency

July 11, 2018

A team of bioengineers at UC San Diego has answered a question that has long puzzled neuroscientists, and may hold a key to better understanding the complexities of neurological disorders: Why are axons, the spindly arms extending from neurons that transmit information from neuron to neuron in the brain, designed the way they are?

Axons are not designed to minimize the use of cell tissue-- they wouldn't be so long and convoluted if that were the case. Conversely, they're not optimized for speed, as recent studies have shown that axons don't fire as fast as they physically could, since this would overwhelm the neuron and lead to a loss of network activity.

So what is the role of the geometry of axons in information flow in the brain?

The answer--that axons are designed and optimized to balance the speed that information flows into the neuron relative to the time it takes the neuron to process that information--seems intuitive, but has never been quantified until now.

This underlying principle of neuroscience, published July 11 in Scientific Reports, could revolutionize our understanding of how signal flow in the brain can be measured and perturbed, and could have an equally large impact on artificial neural networks in the field of machine learning.

Refraction Ratio

The specific balance that biological neurons are designed to accommodate is called the refraction ratio: it's the ratio between the refractory period of a neuron--when the neuron is unable to process incoming signals since its ion channels are resetting after being flooded with sodium-- and the signal latency of information traveling down the axon. When that ratio approaches one, there is perfect balance, and the neuron is operating as efficiently as possible.

In the study conducted by first author Francesca Puppo, a postdoctoral researcher in Bioengineering Professor Gabriel Silva's lab at the Jacobs School of Engineering at UC San Diego, the median refraction ratio value of the nearly 12,000 axonal branches examined was 0.92, quite close to the theoretically predicted perfect balance.

The study used a dataset from the NeuroMorpho database that looked at a type of neuron called basket cells. This data was from rats, but humans have basket cells too. Puppo used the 3D morphological data to reconstruct a graph-based model of the neurons' axons and axon branches. Then she calculated the conduction velocity along the axons given the diameter at different points along the axonal arborizations, and estimated the refractory period along the axon from soma to synaptic terminals based on data in the literature. The conduction velocity and length of each axon branch were used to calculate the propagation delay, which she compared to the refraction period to calculate the refraction ratio.

Long, short, straight and curvy axons all had a refraction ratio approaching one. This means that when axons grow in a long and curved shape, it's designed that way by the neuron to slow down the action potential of signals in order to optimize the refraction ratio. When neurons aren't signaling at this ratio, there is a breakdown in information flow efficiency between cells.

One example of this breakdown in efficiency that Silva and colleagues at the UC San Diego School of Medicine are starting to investigate is in patients with autism spectrum disorder.

"The hypothesis we have is that the refraction ratio deviates from the ideal in neurodevelopmental disorders such as autism," Silva said. "We think that may be the case for individual neurons, as well as networks of neurons."

Puppo added that understanding this baseline of optimal function in neurons will allow researchers to better understand how information flow is perturbed in a variety of ways, including other neurological disorders such as schizophrenia, for example, as well as better understanding how drugs affect neuron function, since pharmacological drugs impact the cell's activity and the way synaptic transmission occurs in networks of neurons.

"It would be interesting to investigate how drug perturbation affects signaling efficiency through computation of the refraction ratio for pairs of neurons in in-vitro networks of neurons before and after exposure to different chemical compounds," Puppo said. "The detection of a change in the refraction ratio could be helpful in the determination of their neural rescue properties."

Machine Learning

On the non-biological side, understanding the function of the refraction ratio and the shape of axons has implications in the development of more brain-like artificial neural networks.

Whereas traditional artificial neural networks have many weighted incoming signals with an output that's a summation of all of these signals, Silva and his lab are developing a new paradigm that adds the element of time to the mix--like the refractory period does in biological systems--so not all incoming signals are calculated in the output.

In geometric spatial-temporal artificial networks they are building, the time a signal takes to reach the node is also a factor in the output, similar to the way the refractory period functions in the human brain. This adds complexity to the system, but makes the learning process richer.

Silva is developing a fundamentally novel machine learning architecture based on these networks as part of the Center for Engineering Natural Intelligence at the Jacobs School of Engineering.

In addition to studying the refraction ratio of people with neurological disorders and applying the concept to artificial neural networks, Puppo said additional further work includes studying varying types of neurons to understand if some have refraction ratios that deviate slightly from 1 to serve a specific purpose in a cell's dynamics.
-end-
Paper title: "An Optimized Structure-Function Design Principle Underlies Efficient Signaling Dynamics in Neurons." Co-authors include Francesca Puppo, Vivek George and Gabriel A. Silva at UC San Diego.

This work was supported by a Swiss National Science Foundation (SNSF) Mobility Fellowship (P2ELP2 168553) to FP. Army Research Office (ARO), United States Department of Defense (grant numbers 65375-NS and 63795EGII). And in part by unrestricted funds to the Center for Engineered Natural Intelligence (CENI).

University of California - San Diego

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by Gregory Hickok (Author)

The 7 Secrets of Neuron Leadership: What Top Military Commanders, Neuroscientists, and the Ancient Greeks Teach Us about Inspiring Teams
by W. Craig Reed (Author), Gordon R. England (Foreword)

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

From Neuron to Brain
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

Schizophrenia Revealed: From Neurons to Social Interactions
by Michael Foster Green (Author)

The NEURON Book
by Nicholas T. Carnevale (Author), Michael L. Hines (Author)

The Cortical Neuron
by Michael J. Gutnick (Editor), Istvan Mody (Editor)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...