Nav: Home

Wakanda forever! Scientists describe new species of 'twilight zone' fish from Africa

July 11, 2019

SAN FRANCISCO (July 11, 2019) - Africa has new purple-clad warriors more than 200 feet beneath the ocean's surface. Deep-diving scientists from the California Academy of Sciences' Hope for Reefs initiative and the University of Sydney spotted dazzling fairy wrasses--previously unknown to science--in the dimly lit mesophotic coral reefs of eastern Zanzibar, off the coast of Tanzania. The multicolored wrasses sport deep purple scales so pigmented, they even retain their color (which is typically lost) when preserved for research. The scientists name this "twilight zone" reef-dweller Cirrhilabrus wakanda (common name "Vibranium Fairy Wrasse") in honor of the mythical nation of Wakanda from the Marvel Entertainment comics and movie Black Panther. The new fish is described today in ZooKeys.

"When we thought about the secretive and isolated nature of these unexplored African reefs, we knew we had to name this new species after Wakanda," says Yi-Kai Tea, lead author and ichthyology PhD student from the University of Sydney. "We've known about other related fairy wrasses from the Indian Ocean, but always thought there was a missing species along the continent's eastern edge. When I saw this amazing purple fish, I knew instantly we were dealing with the missing piece of the puzzle."

Underwater Wakanda

The Academy scientists say Cirrhilabrus wakanda's remote home in mesophotic coral reefs--below recreational diving limits--probably contributed to their long-hidden status in the shadows of the Indian Ocean. Hope for Reefs' scientific divers are highly trained for the dangerous process of researching in these deep, little-known mesophotic reefs, located 200 to 500 feet beneath the ocean's surface. Accessing them requires technical equipment and physically intense training well beyond that of shallow-water diving. The team's special diving gear (known as closed-circuit rebreathers) includes multiple tanks with custom gas blends and electronic monitoring equipment that allow the divers to explore deep reefs for mere minutes before a lengthy, hours-long ascent to the surface.

"Preparation for these deep dives is very intense and our dive gear often weighs more than us," says Dr. Luiz Rocha, Academy Curator of Fishes and co-leader of the Hope for Reefs initiative. "When we reach these reefs and find unknown species as spectacular as this fairy wrasse, it feels like our hard work is paying off."

Using a microscope, the team examined the specimens' scales, fin rays, and body structures. DNA and morphological analyses revealed the new fairy wrasse to be different from the other seven species in the western Indian Ocean as well as other relatives in the Pacific. The new species' common name is inspired by the fictional metal vibranium, a rare, and, according to Rocha, "totally awesome" substance found in the Black Panther nation of Wakanda. The Vibranium Fairy Wrasse's purple chain-link scale pattern reminded the scientists of Black Panther's super-strong suit and the fabric motifs worn by Wakandans in the hit film.

Precious life in deep reefs

In a recent landmark paper, the Academy team found that twilight zone reefs are unique ecosystems bursting with life and are just as vulnerable to human threats as their shallow counterparts. Their findings upended the long-standing assumption that species might avoid human-related stressors on those deeper reefs. The Hope for Reefs team will continue to visit and study twilight zone sites around the world to shed light on these often-overlooked ecosystems.

In addition to this new fish from Zanzibar, Rocha and his colleagues recently published descriptions of mesophotic fish from Rapa Nui [Easter Island] and Micronesia. Luzonichthys kiomeamea is an orange, white, and sunny yellow dwarf anthias endemic to Rapa Nui, and the basslet Liopropoma incandescens (another new species published today in Zookeys) inhabits Pohnpei's deep reefs--a neon orange and yellow specimen collected from a rocky slope 426 feet beneath the ocean's surface.

"It's a time of global crisis for coral reefs, and exploring little-known habitats and the life they support is now more important than ever," says Rocha. "Because they are out of sight, these deeper reefs are often left out of marine reserves, so we hope our discoveries inspire their protection."
-end-
The Academy's Hope for Reefs initiative is made possible through the support of visionary donors. The Academy gratefully acknowledges the lead partners listed below.
    William K. Bowes, Jr. Foundation
    OceanX, an initiative of Dalio Philanthropies
    Jennifer Caldwell and John H. N. Fisher
    Eva and Bill Price
    Wendy and Eric Schmidt
    Huifen Chan and Roelof F. Botha
    Kingfisher Foundation
    Hellman Foundation
    Frances and Warren Hellman
    Diana Nelson and John Atwater
    United Airlines

About research at the California Academy of Sciences

The Institute for Biodiversity Science and Sustainability at the California Academy of Sciences is at the forefront of efforts to understand two of the most important topics of our time: the nature and sustainability of life on Earth. Based in San Francisco, the Institute is home to more than 100 world-class scientists, state-of-the-art facilities, and nearly 46 million scientific specimens from around the world. The Institute also leverages the expertise and efforts of more than 100 international Associates and 450 distinguished Fellows. Through expeditions around the globe, investigations in the lab, and analyses of vast biological datasets, the Institute's scientists work to understand the evolution and interconnectedness of organisms and ecosystems, the threats they face around the world, and the most effective strategies for sustaining them into the future. Through innovative partnerships and public engagement initiatives, they also guide critical sustainability and conservation decisions worldwide, inspire and mentor the next generation of scientists, and foster responsible stewardship of our planet.

California Academy of Sciences

Related Coral Reefs Articles:

A brave new world for coral reefs
It is not too late to save coral reefs, but we must act now.
Regular coral larvae supply from neighboring reefs helps degraded reefs recover
For reefs facing huge challenges, more coral larvae doesn't necessarily translate to increased rates of coral recovery on degraded reefs, a new Queensland study has showed.
Potential for Saudi Arabian coral reefs to shine
Careful marine management and stricter fishing laws could enable Saudi Arabia's coral reefs to thrive.
New coral bleaching database to help predict fate of global reefs
A UBC-led research team has developed a new global coral bleaching database that could help scientists predict future bleaching events.
Fish social lives may be key to saving coral reefs
Fish provide a critical service for coral reefs by eating algae that can kill coral and dominate reefs if left unchecked.
Land-based microbes may be invading and harming coral reefs
A new study suggests that coral reefs -- already under existential threat from global warming -- may be undergoing further damage from invading bacteria and fungi coming from land-based sources, such as outfall from sewage treatment plants and coastal inlets.
Dead zones may threaten coral reefs worldwide
Dead zones affect dozens of coral reefs around the world and threaten hundreds more according to a new study by Smithsonian scientists published in Proceedings of the National Academy of Sciences.
Deep reefs unlikely to save shallow coral reefs
Often highlighted as important ecological refuges, deep sections of coral reefs (30-60 m depth) can offer protection from the full force of climate change-related impacts, such as intensifying storms and warm-water bleaching.
Coral reefs grow faster and healthier when parrotfish are abundant
A new study by Smithsonian scientists and colleagues that reveals 3,000 years of change in reefs in the western Caribbean provides long-term, compelling evidence that parrotfish, which eat algae that can smother corals, are vital to coral-reef growth and health.
Rising CO2 threatens coral and people who use reefs
Damage to coral reefs from ocean acidification and sea surface temperature rise will be worst at just the spots where human dependence on reefs is highest, according to a new analysis appearing in PLOS ONE.

Related Coral Reefs Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".