Nav: Home

Ammonia from agriculture influences cloud formation over Asia

July 11, 2019

The Asian tropopause aerosol layer (ATAL) is located at twelve to 18 kilometers height above the Middle East and Asia. This accumulation of aerosols in the Asian monsoon was discovered first in 2011. Its composition and effect, however, have been unknown so far. A European consortium of scientists has now found at this layer consists of crystalline ammonium nitrate. In the AIDA cloud chamber, climate researchers of Karlsruhe Institute of Technology (KIT) demonstrated how this substance is formed in the upper troposphere. The results are reported in Nature Geoscience.

Using a smart combination of remote sensing, in situ measurements, meteorological model calculations, specific laboratory measurements, and detailed numerical simulations, the team studied the distribution and composition of aerosols in the ATAL. Aerosols are smallest suspended particles from a variety of natural and anthropogenic sources. In the atmosphere, aerosols act as condensation nuclei to which gaseous water vapor attaches and, thus, forms cloud droplets. For the first time, a research aircraft flew through the upper levels of the Asian monsoon to study key processes of global importance. The different methods and instruments complemented each other to verify the measured results. Scientists from KIT, Forschungszentrum Jülich (FZJ), Johannes Gutenberg University and Max Planck Institute for Chemistry, both in Mainz, Alfred Wegener Institute, the University of Wuppertal, Laboratoire de Métérologie Dynamique, Paris, and the Istituto di Scienze dell'Atmosfera e del Clima, Rome, took part.

"Surprisingly, we detected crystalline ammonium nitrate as a main constituent in large parts of the ATAL," says Dr. Michael Höpfner from the Atmospheric Trace Gases and Remote Sensing Division of KIT's Institute of Meteorology and Climate Research (IMK-ASF). The unexpected results measured, among others, by the GLORIA instrument of KIT and Forschungszentrum Jülich were then confirmed by climate researchers at KIT's AIDA cloud chamber: "Our experiments revealed that, contrary to the prevailing opinion, liquid ammonium nitrate droplets crystallize to solid particles at minus 50 degrees in the presence of small, mainly sulfur-containing pollutions. These solid particles continue to exist even under temperature and humidity conditions of the upper troposphere," says Dr. Robert Wagner from the Atmospheric Aerosol Research Division of KIT's Institute of Meteorology and Climate Research. With satellite observations, the researchers indeed found large amounts of ammonium nitrate aerosols above Asia. These observations reach back into the year 1997 when the ATAL was not yet supposed to exist.

"With this, we have solved the long-standing puzzle of the composition of ATAL," says Michael Höpfner. So far, it has been considered highly improbable that this aerosol exists at such high altitudes, because the precursory ammonia gas is washed out of the atmosphere very quickly by rain. "But we detected unparalleled ammonia concentrations during the Asian monsoon: the values are up to fifty times higher than in previous measurements," Höpfner adds. This ammonium mainly originates from agriculture, in particular from lifestock farming and fertilization. The highest ammonia emissions are currently found in Asia. During the monsoon, polluted air masses are transported from the land surface to heights of up to 18 km. Here, ammonia reacts to ammonium nitrate, an aerosol that influences both the formation and properties of clouds.

"It is now for the first time that our data prove that ammonium nitrate aerosols are omnipresent in the upper troposphere during the Asian monsoon," Höpfner says. These results are relevant in particular to the interactions of clouds and aerosols, which represent one of the biggest uncertainties in climate modeling. Moreover, the findings prove that ammonia emitted on the ground has a big influence on the processes in the upper troposphere and potentially on the Asian climate.

Tracking Down Ammonia: The GLORIA Measurement Instrument and AIDA Cloud Chamber

The aircraft campaign was part of the StratoClim project in which 37 scientific organizations from eleven European countries, the USA, Bangladesh, India, and Nepal collaborate under the direction of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. The high-altitude aircraft M55-Geophysika carried 25 specially developed instruments to heights above 20 km, about twice the height usually reached by airplanes. A major instrument on board of Geophysika was the infrared spectrometer GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) measuring height distribution of a variety of trace gases along the flight path. Measurements during the flights mainly concentrated on ammonia, as it is largely involved in the formation of aerosol particles. GLORIA presently is the only instrument that can measure ammonia at these heights.

Based on the data measured by the satellite instrument MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) of KIT's IMK-ASF for height distribution of more than 30 trace gases between 2002 and 2012, the scientists for the first time acquired the global distribution of ammonia and ammonium nitrate at the same time. For their studies, they also used the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) facility on KIT's Campus North. It is the only facility worldwide, where aerosol and climate processes can be studied under atmospheric conditions. In the facility, all temperature and pressure conditions in the lower and middle atmosphere can be simulated.
Original Publication:

Michael Höpfner, Jörn Ungermann, Stephan Borrmann, Robert Wagner, Reinhold Spang et al.: Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons, Nature Geoscience, 2019. DOI: 10.1038/s41561-019-0385-8

More about the KIT Climate and Environment Center:

Press contact: Sarah Werner, Redakteurin/Pressereferentin, Tel.: +49 721 608-21170,

Being „The Research University in the Helmholtz Association", KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,100 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

Karlsruher Institut für Technologie (KIT)

Related Aerosols Articles:

Human activities worsen air quality in Dunhuang, a desert basin in China
Due to the increasing contribution of human activities, air quality has become worse in the most recent decade over the Dunhuang area, and the main reason is a shift to a mixture of coarse and fine particles, having previously been due to dust aerosol alone.
Role aerosols play in climate change unlocked by spectacular Icelandic volcanic eruption
A spectacular six-month Icelandic lava field eruption could provide the crucial key for scientists to unlock the role aerosols play in climate change, through their interactions with clouds.
Large volcanic eruption may have caused the first mass extinction
Researchers say they may have found the cause of the first mass extinction of life.
Biological activity found to affect aerosols produced from sea spray
Chemists have discovered that tiny particulate matter called aerosols lofted into the atmosphere by sea spray and the bursting of bubbles at the ocean's surface are chemically altered by the presence of biological activity.
Exploring ocean waters to characterize atmospheric aerosols
Aerosols play a major role in cloud formation, with a strong impact on climate models.
Air pollution may have masked mid-20th Century sea ice loss
Humans may have been altering Arctic sea ice longer than previously thought, according to researchers studying the effects of air pollution on sea ice growth in the mid-20th Century.
Rocky mountain haze
University of Utah atmospheric scientist Gannet Hallar and colleagues find a correlation between the severity of drought in the Intermountain West and the summertime air quality, particularly the concentration of aerosol particles, in remote mountain wilderness regions.
New insights into how black carbon aerosols impact the atmospheric boundary layer
It is widely known that soot particles emitted from South Asia are spread across the northern Indian Ocean during the winter monsoon season.
Aerosol emissions in East Asia driven by consumption in developed countries
Much of the influence on climate from air pollution in East Asia is driven by consumption in the developed countries of Western Europe and North America, according to research co-led by McGill University atmospheric scientist Yi Huang.
Aerosols strengthen storm clouds, according to new study
An abundance of aerosol particles in the atmosphere can increase the lifespans of large storm clouds by delaying rainfall, making the clouds grow larger and live longer, and producing more extreme storms, according to new research from the University of Texas at Austin.

Related Aerosols Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".