Nav: Home

Experimental mini-accelerator achieves record energy

July 11, 2019

Scientists at DESY have achieved a new world record for an experimental type of miniature particle accelerator: For the first time, a terahertz powered accelerator more than doubled the energy of the injected electrons. At the same time, the setup significantly improved the electron beam quality compared to earlier experiments with the technique, as Dongfang Zhang and his colleagues from the Center for Free-Electron Laser Science (CFEL) at DESY report in the journal Optica. "We have achieved the best beam parameters yet for terahertz accelerators," said Zhang.

"This result represents a critical step forward for the practical implementation of terahertz-powered accelerators," emphasized Franz Kärtner, who heads the ultrafast optics and X-rays group at DESY. Terahertz radiation lies between infrared and microwave frequencies in the electromagnetic spectrum and promises a new generation of compact particle accelerators. "The wavelength of terahertz radiation is about a hundred times shorter than the radio waves currently used to accelerate particles," explained Kärtner. "This means that the components of the accelerator can also be built to be around a hundred times smaller." The terahertz approach promises lab-sized accelerators that will enable completely new applications for instance as compact X-ray sources for materials science and maybe even for medical imaging. The technology is currently under development.

Since terahertz waves oscillate so fast, every component and every step has to be precisely synchronized. "For instance, to achieve the best energy gain, the electrons have to hit the terahertz field exactly during its accelerating half cycle," explained Zhang. In accelerators, particles usually do not fly in a continuous beam, but are packed in bunches. Because of the fast-changing field, in terahertz accelerators these bunches have to be very short to ensure even acceleration conditions along the bunch.

"In previous experiments the electron bunches were too long", said Zhang. "Since the terahertz field oscillates so quickly, some of the electrons in the bunch were accelerated, while others were even slowed down. So, in total there was just a moderate average energy gain, and, what is more important, a wide energy spread, resulting in what we call poor beam quality." To make things worse, this effect strongly increased the emittance, a measure for how well a particle beam is bundled transversally. The tighter, the better - the smaller the emittance.

To improve the beam quality, Zhang and his colleagues built a two-step accelerator from a multi-purpose device they had developed earlier: The Segmented Terahertz Electron Accelerator and Manipulator (STEAM) can compress, focus, accelerate and analyze electron bunches with terahertz radiation. The researchers combined two STEAM devices in line. They first compressed the incoming electron bunches from about 0.3 millimetres in length to just 0.1 millimetres. With the second STEAM device, they accelerated the compressed bunches. "This scheme requires control on the level of quadrillionths of a second, which we achieved," said Zhang "This led to a fourfold reduction of the energy spread and improved the emittance sixfold, yielding the best beam parameters of a terahertz accelerator so far."

The net energy gain of the electrons that were injected with an energy of 55 kiloelectron volts (keV) was 70 keV. "This is the first energy boost greater than 100 percent in a terahertz powered accelerator," emphasised Zhang. The coupled device produced an accelerating field with a peak strength of 200 million Volts per metre (MV/m) - close to state-of-the-art strongest conventional accelerators. For practical applications this still has to be significantly improved. "Our work shows that even a more than three times stronger compression of the electron bunches is possible. Together with a higher terahertz energy, acceleration gradients in the regime of gigavolts per metre seem feasible," summarized Zhang. "The terahertz concept thus appears increasingly promising as a realistic option for the design of compact electron accelerators."
-end-
The achieved progress is also central for the ERC funded project AXSIS (frontiers in Attosecond X-ray Science: Imaging and Spectroscopy) at CFEL, which pursues short pulse X-ray spectroscopy and imaging of complex biophysical processes, where the short X-ray pulses are generated with THz based electron accelerators. CFEL is a joint venture of DESY, the University of Hamburg and the Max Planck Society.

DESY is one of the world's leading particle accelerator centres. Researchers use the large?scale facilities at DESY to explore the microcosm in all its variety - ranging from the interaction of tiny elementary particles to the behaviour of innovative nanomaterials and the vital processes that take place between biomolecules to the great mysteries of the universe. The accelerators and detectors that DESY develops and builds at its locations in Hamburg and Zeuthen are unique research tools. DESY is a member of the Helmholtz Association, and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent).

Reference:

Femtosecond phase control in high field Terahertz driven ultrafast electron sources; Dongfang Zhang, Arya Fallahi, Michael Hemmer, Hong Ye, Moein Fakhari, Yi Hua, Huseyin Cankaya, Anne-Laure Calendron, Luis E. Zapata, Nicholas H. Matlis, Franz X. Kärtner; Optica, 2019; DOI: 10.1364/OPTICA.6.000872

Deutsches Elektronen-Synchrotron DESY

Related Electrons Articles:

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.