Nav: Home

Engineers revolutionize molecular microscopy

July 11, 2019

"All matter consists of positively charged atomic nuclei and negatively charged electrons," explains Professor Dr.-Ing. Rolf Findeisen from the Institute of Automation Technology at the University of Magdeburg. "These generate electrical potentials. Using conventional methods, until now it has been barely possible to measure these very weak fields, which are responsible for many of the characteristics and functionalities of materials."

With the newly developed Scanning Quantum Dot Microscopy, a single molecule, known as a quantum dot, is mounted on the tip of the needle of a scanning force microscope. This tip travels, like the needle of a record player, over the sample with the molecule at temperatures close to absolute zero and thus, step by step creates a coherent representation of the surface.

Together with his doctoral student, Michael Maiworm, Professor Rolf Findeisen developed a controller for the innovative microscope method - an algorithm that controls the scanning process. This makes the accurate, but until now extremely long-winded measurement of potentials at molecular resolution possible in just a few minutes. "With the new controller we can now easily scan the entire surface of a molecule, as with a normal scanning force microscope," says Christian Wagner from the Jülich Research Center. This enables us to produce high-resolution images of the potential, which previously appeared unattainable.

"There are many possible uses for this new, unusually precise and fast microscopy technique," continues Michael Maiworm, who largely developed the controller as part of his dissertation supervised by Professor Findeisen. "They range from fundamental physical questions to semiconductor electronics - where even a single atom can be critical for functionality - and molecular chemical reactors to the characterization of biomolecules such as our DNA or biological surfaces."

The work is a part of the cooperation between Magdeburg and Jülich, which examines the targeted and automated manipulation of objects at nano level. In this connection the molecular tip has a dual function: it is simultaneously both a measuring probe and a tool. This opens up the possibility of, in future, being able to create nanostructures via 3D printing. It is conceivable, for example, that it might be possible to produce electrical circuits consisting of individual molecules or sensors of molecular dimension and resolution.
-end-
Original Publication:

Quantitative imaging of electric surface potentials with single-atom sensitivity

Christian Wagner, Matthew. F. B. Green, Michael Maiworm, Philipp Leinen, Taner Esat, Nicola Ferri, Niklas Friedrich, Rolf Findeisen, Alexandre Tkatchenko, Ruslan Temirov, F. Stefan Tautz Nature Materials (published online 10 June 2019), DOI: 10.1038/s41563-019-0382-8

Otto-von-Guericke-Universität Magdeburg

Related Quantum Dot Articles:

Quantum dot lasers move a step closer with electric-pumping development at NTU Singapore
Scientists from Nanyang Technological University, Singapore (NTU Singapore) have developed a way to make Colloidal Quantum Dots produce laser light with the help of an electric field.
A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
New quantum dot microscope shows electric potentials of individual atoms
Researchers from Jülich in cooperation with partners from other institutions has developed a new method to measure the electric potentials of a sample at atomic accuracy.
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Engineering researchers have combined two emerging technologies for next-generation solar power -- and discovered that each one helps stabilize the other.
Review of preparation and structures of silicon nanowire/germanium quantum dot composite materials
In a paper to be published in the forthcoming issue in NANO, a team of researchers from Yunnan University, China, have reviewed the recent research on preparation methods and structures of Silicon nanowires (SiNWs) and Germanium quantum dots (GeQDs) and their composites, in order to explore their novel physical properties and improve on their optoelectronic properties.
Fertility app 'Dot' found to be as effective as other family planning methods
Results of a first-of-its-kind prospective study with a family planning app find it to be as effective as other modern methods for avoiding an unplanned pregnancy, according to Georgetown researchers.
Nanocrystal 'factory' could revolutionize quantum dot manufacturing
A new system for synthesizing quantum dots across the entire spectrum of visible light drastically reduces manufacturing costs, can be tuned on demand to any color and allows for real-time process monitoring to ensure quality control.
In the blink of an eye: Team uses quantum of light to create new quantum simulator
Imagine being stuck inside a maze and wanting to find your way out.
Quantum scientists demonstrate world-first 3D atomic-scale quantum chip architecture
UNSW scientists have shown that their pioneering single atom technology can be adapted to building 3D silicon quantum chips -- with precise interlayer alignment and highly accurate measurement of spin states.
More Quantum Dot News and Quantum Dot Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab