Engineers revolutionize molecular microscopy

July 11, 2019

"All matter consists of positively charged atomic nuclei and negatively charged electrons," explains Professor Dr.-Ing. Rolf Findeisen from the Institute of Automation Technology at the University of Magdeburg. "These generate electrical potentials. Using conventional methods, until now it has been barely possible to measure these very weak fields, which are responsible for many of the characteristics and functionalities of materials."

With the newly developed Scanning Quantum Dot Microscopy, a single molecule, known as a quantum dot, is mounted on the tip of the needle of a scanning force microscope. This tip travels, like the needle of a record player, over the sample with the molecule at temperatures close to absolute zero and thus, step by step creates a coherent representation of the surface.

Together with his doctoral student, Michael Maiworm, Professor Rolf Findeisen developed a controller for the innovative microscope method - an algorithm that controls the scanning process. This makes the accurate, but until now extremely long-winded measurement of potentials at molecular resolution possible in just a few minutes. "With the new controller we can now easily scan the entire surface of a molecule, as with a normal scanning force microscope," says Christian Wagner from the Jülich Research Center. This enables us to produce high-resolution images of the potential, which previously appeared unattainable.

"There are many possible uses for this new, unusually precise and fast microscopy technique," continues Michael Maiworm, who largely developed the controller as part of his dissertation supervised by Professor Findeisen. "They range from fundamental physical questions to semiconductor electronics - where even a single atom can be critical for functionality - and molecular chemical reactors to the characterization of biomolecules such as our DNA or biological surfaces."

The work is a part of the cooperation between Magdeburg and Jülich, which examines the targeted and automated manipulation of objects at nano level. In this connection the molecular tip has a dual function: it is simultaneously both a measuring probe and a tool. This opens up the possibility of, in future, being able to create nanostructures via 3D printing. It is conceivable, for example, that it might be possible to produce electrical circuits consisting of individual molecules or sensors of molecular dimension and resolution.
-end-
Original Publication:

Quantitative imaging of electric surface potentials with single-atom sensitivity

Christian Wagner, Matthew. F. B. Green, Michael Maiworm, Philipp Leinen, Taner Esat, Nicola Ferri, Niklas Friedrich, Rolf Findeisen, Alexandre Tkatchenko, Ruslan Temirov, F. Stefan Tautz Nature Materials (published online 10 June 2019), DOI: 10.1038/s41563-019-0382-8

Otto-von-Guericke-Universität Magdeburg

Related Quantum Dot Articles from Brightsurf:

Breakthrough quantum-dot transistors create a flexible alternative to conventional electronics
Researchers at Los Alamos National Laboratory and their collaborators from the University of California, Irvine have created fundamental electronic building blocks out of tiny structures known as quantum dots and used them to assemble functional logic circuits.

Turning a hot spot into a cold spot: Fano-shaped local-field responses probed by a quantum dot
Optical nanoantennas can convert propagating light to local fields. Scientists in China demonstrate that in the nanogap of a nanoantenna, a local-field hot spot can be turned into a cold spot, and the spectral dispersion of the local-field response can exhibit dynamically tunable Fano lineshapes with nearly vanishing Fano dips.

Colloidal quantum dot light emitters go broadband in the infrared
A team of ICFO researchers develops a new class of broadband solid state light emitter in the short-wave infrared that could be miniaturized, integrated with CMOS technology and used for many applications including food inspection, health or safety.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Optical shaping of polarization anisotropy in a laterally-coupled-quantum-dot dimer
Coupled-quantum-dot (CQD) structures are considered to be an important building block in the development of scalable quantum devices.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

Efficient, 'green' quantum-dot solar cells exploit defects
Novel quantum dot solar cells developed at Los Alamos National Laboratory match the efficiency of existing quantum-dot based devices, but without lead or other toxic elements that most solar cells of this type rely on.

New carbon dot-based method for increasing the efficiency of solar cells & LED
An international group of scientists has proposed a method that allows for significantly increasing the efficiency of solar cells and light-emitting diodes by augmenting the auxiliary layers of the devices responsible for electron transport.

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

Read More: Quantum Dot News and Quantum Dot Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.