Nav: Home

Coral skeleton crystals record ocean acidification

July 11, 2019

The acidification of the oceans is recorded in the crystals of the coral skeleton. This is a new tool for studying past environmental changes and combating climate change. Such is the main conclusion of a study led by the Spanish scientist Ismael Coronado Vila, from the Institute of Paleobiology in Warsaw (Poland).

Coral skeletons are composed of (micrometric) crystals of aragonite, a variety of calcium carbonate. Their function within their skeletons is highly varied: it is the support that allows them to grow, provides protection against predators and sometimes helps them to ascend from the ocean floor in order to benefit from the light, as some corals live with symbiotic algae in their interior, which provides them with nutrients.

A study published in the journal Nature Communications shows, for the first time, the relationship between physiological changes caused in corals living in the acidified ocean and changes in the organization of their skeleton on an atomic or crystallographic scale.

"Our research has shown that the reef-forming coral, Stylophora pistillata, records subtle changes in its skeleton at different seawater pHs," says Ismael Coronado Vila, a scientist at the Institute of Paleobiology of the Polish Academy of Sciences in Warsaw (Poland), who is leading the work together with Jarosław Stolarski.

Thus, coral skeletons formed under ocean acidification conditions (low pH) undergo systematic changes in the arrangement of skeletal crystals and physiological alterations of the coral. "For example, in acidic conditions there is a greater incorporation of organic matrix into the skeleton," adds the expert.

To complete this study, these scientists incubated coral colonies in aquariums for 14 months at the Inter-University Institute of Marine Sciences in Eilat (Israel) and these were subsequently studied in Spanish laboratories at the Complutense University of Madrid and the Spanish National Research Council, among others.

"The acidic conditions of the experiments simulated everything from the current pH in the Red Sea, where Stylophora lives, to the worst scenarios predicted for the end of the 21st century in our oceans," continues Coronado Vila.

Tracing the history of acidification in the seas

The accumulation of corals on the seabed is what forms the reefs and these, although they take up a mere 0.2% of the earth's surface, constitute one of the planet's hot spots of diversity, as are tropical rainforests. Many other species of organisms depend on them.

The coral studied, Stylophora pistillata, is one of the best-studied corals in the world and its ancestry spans the past for as long as millions of years. "Which makes it a good candidate for exploring these processes in the fossil record, for example, since the Cenozoic (66 million years ago)," argues the scientist.

These results cannot be extrapolated to all corals in the world as it is known that not all of them respond in the same way to climate change. For the researcher, "it is a first approximation to how these processes affect corals of this type: tropical reef corals."

However, knowing where and when episodes of ocean acidification occurred in the geological past and how they affected floras and marine faunas (particularly reefs), and therefore terrestrial ones as well, will help to predict the effects the process that our oceans are undergoing will have in the near future.

"Global warming is already affecting and damaging our reefs and not only harms our biosphere, but also our economy; 25% of marine fish depend on them and the losses that are occurring may be irreparable," warns Coronado Vila.
-end-
References:

Coronado, Ismael, Fine, Maoz, Bosellini, Francesca R., Stolarski, Jarosław. 2019. Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nature Communications, doi:10.1038/s41467-019-10833-6.

FECYT - Spanish Foundation for Science and Technology

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".