Nav: Home

Successful T cell engineering with gene scissors

July 11, 2019

The idea of genetically modifying a patient's own immune cells and deploying them against infections and tumors has been around since the 1980s. But to this day modified T cells are still not as effective as natural T cells and have been only been of limited clinical value. Using the new CRISPR-Cas9 gene editing tool, a team at the Technical University of Munich (TUM) has now engineered T cells that are very similar to physiological immune cells.

There are two forms of T cell therapy: either a recipient receives cells from a donor, or the recipient's own T cells are removed, genetically reprogrammed in a laboratory and unleashed against an infection or tumor in the body. While the first method has proven to be successful in clinical models, reprogramming T cells is still beset with problems.

Modifying T cell receptors

The team led by Professor Dirk Busch, Director of the Institute for Medical Microbiology, Immunology and Hygiene at the TUM, has generated modified T cells for the first time that are very similar to their natural counterparts and could solve some of those problems. To do so, they utilized the new CRISPR-Cas9 gene scissors, which can be used to snip out and replace targeted segments of the genome.

Both the conventional methods and the new method target the key homing instrument of T cells, known as the T cell receptor. The receptor, residing on the cell's surface, recognizes specific antigens associated with pathogens or tumor cells, which the T cell is then able to attack. Each receptor is made up of two molecular chains that are linked together. The genetic information for the chains can be genetically modified to produce new receptors that are able to recognize any desired antigen. In this way, it is possible to reprogram T cells.

Targeted exchange using the CRISPR-Cas9 gene scissors

The problem with conventional methods is that the genetic information for the new receptors is randomly inserted into the genome. This means that T cells are produced with both new and old receptors or with receptors having one old and one new chain. As a result, the cells do not function as effectively as physiological T cells and are also controlled differently. Moreover, there is a danger that the mixed chains could trigger dangerous side effects (Graft-versus-Host Disease, GvHD).

"Using the CRISPR method, we've been able to completely replace the natural receptors with new ones, because we're able to insert them into the very same location in the genome. In addition, we've replaced the information for both chains so that there are no longer any mixed receptors," explains Kilian Schober, who is a lead author of the new study along with his colleague Thomas Müller.

Near-natural properties

Thomas Müller explains the advantages of the modified T cells: "They're much more similar to physiological T cells, yet they can be changed flexibly. They're controlled like physiological cells and have the same structure, but are capable of being genetically modified." The scientists have demonstrated in a cell culture model that T cells modified in this way behave nearly exactly like their natural counterparts.

"Another advantage is that the new method allows multiple T cells to be modified simultaneously so that they're able to recognize different targets and can be used in combination. This is especially interesting for cancer therapy, because tumors are highly heterogeneous," Dirk Busch adds. In the future, the team plans to investigate the new cells and their properties in preclinical mouse models, an important step in preparing for clinical trials with humans.
-end-
More information:

Profile of Professor Dirk Busch http://www.professoren.tum.de/busch-dirk/

Institute of Medical Microbiology, Immunology and Hygiene (in German only) http://www.mikrobio.med.tum.de/

Download high-resolution image https://mediatum.ub.tum.de/1510258

Contact:

Prof. Dr. Dirk Busch
Technical University of Munich
Institut of Medical Microbiology, Immunology and Hygiene
T: +49 (0)89 4140-4120
dirk.busch@mikrobio.med.tum.de

Technical University of Munich (TUM)

Related Immune Cells Articles:

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.
Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.
Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.
Arming the body's immune cells
Researchers at UC have discovered a previously unknown mechanism that could explain the reason behind decreased immune function in cancer patients and could be a new therapeutic target for immunotherapy for those with head and neck cancers.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
How the immune system becomes blind to cancer cells
Researchers have described the activation of a key protein used by tumor cells to stop the body's immune response.
What protects killer immune cells from harming themselves?
White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne.
How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
More Immune Cells News and Immune Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.