Nav: Home

A crystal clear step closer to commerical solar cells

July 11, 2019

A synthetic approach developed by KAUST researchers generates homogeneous and defect-free crystals that could fast-track the commercialization of perovskite solar cells.

"Perovskite solar cells are the fastest developing type of photovoltaic technology, with power-conversion efficiencies rising from 3.8 percent in 2009 to 24.2 percent in 2019 for single-junction devices," says Osman Bakr, who led the study with Omar Mohammed. This rapid increase in performance is associated with inexpensive and simple device fabrication, which makes these solar cells commercially appealing.

The performance and stability of solar cells depend on the morphology of the perovskite thin films, which act as light-harvesting layers in the devices. As well as their low cost and easy processing, these materials have exceptional optical and transport properties. Hybrid lead-based perovskites that combine a methylammonium cation with several halides, such as the anionic forms of bromine and iodine, present a narrow and tunable optical bandgap. This bandgap nears the theoretical value required to reach the maximum conversion efficiency for a single-junction solar cell. Therefore, perokskites could become a substitute of choice for silicon-based solar materials.

However, existing perovskite solar cells usually consist of polycrystalline thin films that are highly disordered and defective, which prevents devices from achieving optimal performance.

To address this issue, Bakr and Mohammed have now produced high-aspect-ratio, single-crystal films of methylammonium lead-triiodide perovskites. They achieved this by starting the crystallization between two polymer-coated substrates that would then physically restrict crystal growth to one dimension under heating.

Compared with their polycrystalline counterparts, single-crystal perovskites display substantially lower defect density and much higher charge-carrier diffusion lengths: this is a measure of their ability to maintain light-generated electrons separate from positively charged holes and create electrical current. Therefore, "We reasoned that these single crystals offer a chance for perovskite solar-cell technology to overcome these limitations and get as close as possible to the theoretical efficiency limit," Mohammed says.

The crystals, which exhibited a thickness of 20 micrometers and an area of several square millimeters, provided high-quality solar cells with a maximum power-conversion efficiency of 21.09 percent. These devices set a new performance record for perovskite single-crystal solar cells.

"We were pleasantly surprised by these results," Bakr says. He adds that the researchers initially thought that they would need to grow crystals much thinner than 20 micrometers to achieve this performance, and growing thin crystals is extremely challenging.

The researchers believe that this record efficiency highlights the potential role of single crystals in the development of perovskite-containing devices in parallel with the path taken by their polycrystalline counterparts.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Crystals Articles:

Rubies on sapphire: Recipe for making crystals in flux
The effect of the holding temperature and solubility curve of rubies was elucidated, for Al2O3:Cr in MoO3 from 1050 to 1200.
Transparency discovered in crystals with ultrahigh piezoelectricity
Use of an AC rather than a DC electric field can improve the piezoelectric response of a crystal.
New photonic liquid crystals could lead to next-generation displays
A new technique to change the structure of liquid crystals could lead to the development of fast-responding liquid crystals suitable for next generation displays -- 3D, augmented and virtual reality -- and advanced photonic applications such as mirrorless lasers, bio-sensors and fast/slow light generation, according to an international team of researchers from Penn State, the Air Force Research Laboratory and the National Sun Yat-sen University, Taiwan.
The secret behind crystals that shrink when heated
Scientists at Brookhaven Lab have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.
Engineered protein crystals make cells magnetic
If scientists could give living cells magnetic properties, they could perhaps manipulate cellular activities with external magnetic fields.
Appreciating the classical elegance of time crystals
Structures known as 'time crystals' -- which repeat in time as conventional crystals repeat in space -- have recently captured the interest and imagination of researchers across disciplines.
Making and controlling crystals of light
EPFL scientists have shown how light inside optical on-chip microresonators can be crystallized in a form of periodic pulse trains that can boost the performance of optical communication links or endow ultrafast LiDAR with sub-micron precision.
From crystals to glasses: a new unified theory for heat transport
Theoretical physicists from SISSA and the UCDavis lay brand new foundations to heat transport in materials, which finally allow crystals, polycrystalline solids, alloys, and glasses to be treated on the same solid footing.
How to trick electrons to see the hidden face of crystals
The 3D analysis of crystal structures requires a full 3D view of the crystals.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
More Crystals News and Crystals Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.