Nav: Home

A crystal clear step closer to commerical solar cells

July 11, 2019

A synthetic approach developed by KAUST researchers generates homogeneous and defect-free crystals that could fast-track the commercialization of perovskite solar cells.

"Perovskite solar cells are the fastest developing type of photovoltaic technology, with power-conversion efficiencies rising from 3.8 percent in 2009 to 24.2 percent in 2019 for single-junction devices," says Osman Bakr, who led the study with Omar Mohammed. This rapid increase in performance is associated with inexpensive and simple device fabrication, which makes these solar cells commercially appealing.

The performance and stability of solar cells depend on the morphology of the perovskite thin films, which act as light-harvesting layers in the devices. As well as their low cost and easy processing, these materials have exceptional optical and transport properties. Hybrid lead-based perovskites that combine a methylammonium cation with several halides, such as the anionic forms of bromine and iodine, present a narrow and tunable optical bandgap. This bandgap nears the theoretical value required to reach the maximum conversion efficiency for a single-junction solar cell. Therefore, perokskites could become a substitute of choice for silicon-based solar materials.

However, existing perovskite solar cells usually consist of polycrystalline thin films that are highly disordered and defective, which prevents devices from achieving optimal performance.

To address this issue, Bakr and Mohammed have now produced high-aspect-ratio, single-crystal films of methylammonium lead-triiodide perovskites. They achieved this by starting the crystallization between two polymer-coated substrates that would then physically restrict crystal growth to one dimension under heating.

Compared with their polycrystalline counterparts, single-crystal perovskites display substantially lower defect density and much higher charge-carrier diffusion lengths: this is a measure of their ability to maintain light-generated electrons separate from positively charged holes and create electrical current. Therefore, "We reasoned that these single crystals offer a chance for perovskite solar-cell technology to overcome these limitations and get as close as possible to the theoretical efficiency limit," Mohammed says.

The crystals, which exhibited a thickness of 20 micrometers and an area of several square millimeters, provided high-quality solar cells with a maximum power-conversion efficiency of 21.09 percent. These devices set a new performance record for perovskite single-crystal solar cells.

"We were pleasantly surprised by these results," Bakr says. He adds that the researchers initially thought that they would need to grow crystals much thinner than 20 micrometers to achieve this performance, and growing thin crystals is extremely challenging.

The researchers believe that this record efficiency highlights the potential role of single crystals in the development of perovskite-containing devices in parallel with the path taken by their polycrystalline counterparts.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Crystals Articles:

Raucous crystals
Some organic crystals jump around when heated up. This happens because of an extremely fast change in their crystal structure.
Volcanic crystals give a new view of magma
Volcanologists are gaining a new understanding of what's going on inside the magma reservoir that lies below an active volcano and they're finding a colder, more solid place than previously thought, according to new research published June 16 in the journal Science.
A network of crystals for long-distance quantum communication
Quantum physic can guarantee that a message has not be intercepted.
One-dimensional crystals for low-temperature thermoelectric cooling
Nagoya University researchers studied the thermal and electrical properties of one-dimensional crystals composed of tantalum, silicon and tellurium for thermoelectric cooling at temperatures below 250 K (-23°C).
For first time, researchers measure forces that align crystals and help them snap together
For the first time, researchers have measured the force that draws tiny crystals together and visualized how they swivel and align.
New quantum liquid crystals may play role in future of computers
First 3-D quantum liquid crystals may have applications in quantum computing.
Creating time crystals
A team of Harvard researchers created a previously-only-theoretical time crystal using a small piece of diamond embedded with millions of atomic-scale impurities known as nitrogen-vacancy (NV) centers.
DNA double helix structures crystals
For the first time, engineers of Friedrich-Alexander Universität Erlangen Nürnberg (FAU) have succeeded in producing complex crystal lattices, so-called clathrates, from nanoparticles using DNA strands.
Space station crew cultivates crystals for drug development
Crew members aboard the International Space Station will begin conducting research this week to improve the way we grow crystals on Earth.
Novel nozzle saves crystals
Thanks to an innovative nozzle, scientists can now analyse more types of proteins while using fewer of the hard-to-get protein crystals.

Related Crystals Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".