Mosquito surveillance uncovers new information about malaria transmission in madagascar

July 11, 2019

Riley Tedrow, PhD, a medical entomologist at Case Western Reserve University School of Medicine, has uncovered new findings about malaria transmission in Madagascar. In a recent study published in PLoS Neglected Tropical Diseases, he also describes real-world application of an effective mosquito surveillance strategy using low cost traps and a recently reported tool that simultaneously tests each mosquito for its species, what it fed on, and the presence of malaria parasites.

Conducting research in remote villages in Madagascar, Tedrow discovered that female Anopheles mosquitoes-the only mosquitoes that can transmit malaria-bite more often and have more varied diets than typically assumed. These findings could result in better understanding of how the disease is transmitted as well as enhance malaria-prevention strategies.

Specifically, Tedrow found that feeding behavior in the mosquitoes that he collected frequently showed evidence of multiple blood-meal hosts (single host = 53.6%, two hosts = 42.1%, three hosts = 4.3%). The predominant mosquito host was cow, followed by pig, then human.

Additionally, he discovered that the propensity for mosquitoes to feed on humans increased from 27% to 44% between December 2017 and April 2018, when he conducted the study. This suggests that host preferences could vary from season to season, again raising implications for surveillance and eradication campaigns.

Tedrow also found that certain species of Anopheles mosquitoes that are typically considered less important for malaria transmission, and therefore more likely to be overlooked in surveillance and eradication campaigns, were often infected with the Plasmodium parasite that causes malaria. "This hidden reservoir of malaria parasites could hinder malaria eradication," said Tedrow. "The strategy used in this study could easily be adapted to other countries at risk for malaria, possibly uncovering equally complex transmission dynamics that may impact our approach to disease control."

In the same study Tedrow reports that QUEST, his modified, outdoor-based, tennis-net-sized trap, can supplement current mosquito-control interventions, which focus on indoor sources of malaria. "Outdoor trapping can pick up species that other sampling methods might miss out on," he said.

In addition, Tedrow describes his application in Madagascar of BLOODART, a tool he developed that combines an existing malaria test with new host and mosquito-species analysis techniques. BLOODART enables efficient evaluation of hundreds of mosquitoes by simultaneously identifying the species of each mosquito, determining what it has fed on, and diagnosing the presence of malaria parasites, all from a single mosquito abdomen.

Despite intensive international efforts to combat the malady, there were 219 million cases of malaria worldwide and 435,000 subsequent deaths in 2017, with most (92% and 93%, respectively) occurring in Africa.
Tedrow conducted his research under the auspices of the Case Western Reserve University Center for Global Health and Diseases under the direction of Peter Zimmerman, PhD, professor of international health in the School of Medicine.

Funding for this work was supplied by the School of Medicine and stipend support was provided to Tedrow by the U.S. Navy Health Services Collegiate Program Scholarship.

Tedrow, R, et al. "Anopheles mosquito surveillance in Madagascar reveals multiple blood feeding behavior and Plasmodium infection." PLoS Neglected Tropical Diseases. DOI: 10.1371/journal.pntd.0007176

To learn more about Case Western Reserve University School of Medicine, visit

Case Western Reserve University

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to