Nav: Home

Mustering a milder mustard

July 11, 2019

The mustards, broccolis and cabbages of the world share a distinct and bitter taste. Some consider the flavor of cruciferous plants their strongest attribute. But even in India and China, where Brassicas have been cultivated for more than 4,000 years, scientists have sought to tone down the chemical compounds responsible for their pungent flavor. Turns out the same compounds that make them bitter also make them toxic at some levels.

Now researchers from three continents -- including biologists from Washington University in St. Louis -- have mapped the crystal structure of a key protein that makes the metabolites responsible for the bitter taste in Brassicas. A study published this month in the journal The Plant Cell is the first snapshot of how the protein evolved and came to churn out such diverse byproducts in this agriculturally significant group of plants.

The results could be used along with ongoing breeding strategies to manipulate crop plants for nutritional and taste benefits.

The new work is born of a longtime collaboration initiated by Naveen C. Bisht, staff scientist at the National Institute of Plant Genome Research, in New Delhi, India, with Joseph Jez, professor of biology in Arts & Sciences at Washington University, and Jonathan Gershenzon, of the Max Planck Institute for Chemical Ecology, in Jena, Germany.

"All of the Brassicas -- be it Indian mustard, Arabidopsis, broccoli or brussel sprouts -- they all make these pungent, sulphur-smelling compounds, the glucosinolates," Jez said. The compounds have long been recognized as a natural defense against pests.

"Plants need to fight back," Jez said. "They can't really do anything, but they can make stuff."

"There's different profiles of glucosinolates in different plants," he said. "The question has always been if you could modify their patterns to make something new. If insects are eating your plants, could you change the profile and get something that could prevent crop loss?"

But there are a daunting number of glucosinolates: almost 130 different kinds recognized within the Brassicas. Each plant species within the genus makes a "collection" of several different kinds of glucosinolates -- its own flavor mix -- all of which are secondary metabolites of a particular protein.

Researchers have known about the central role of this protein for decades. But prior to this study, no one had ever been able to complete the x-ray crystallography necessary to map it in detail.

The new work, co-led by Roshan Kumar, now a postdoctoral fellow in the Jez laboratory at Washington University, uses genetics, biochemistry and structural biology to help unravel the molecular basis for the evolution and diversification of glucosinolates.

"Glucosinolates are derived from amino acids," Kumar said. "Gene elongation is one of the important steps that provides most of the diversity in the glucosinolate profiles across all of the Brassicas. It decides which type of glucosinolates (the plant) is going to form."

The insight gained in the new study is important step toward mustering a milder mustard, or building a bitter-free broccoli.

But will it help us to eat our greens?

Maybe. Mostly researchers are interested in the potential for modifying glucosinolates in seeds, not in the stems or leafy parts of Brassica plants, Kumar said.

The major oilseed crop Brassica juncea and related rapeseeds are used to make cooking oil in temperate and subtropical areas of the world. Plant breeders have sought to adjust the levels of glucosinolates in these crops so that the protein-rich seed cake leftovers can be used as a feed supplement for cattle and poultry.

"If you decrease glucosinolates from all over the plant, it becomes susceptible to pests and pathogens," Kumar said. "That is why there is a need for smart engineering of glucosinolates."
-end-


Washington University in St. Louis

Related Protein Articles:

Discovery of an unusual protein
Scientists from Bremen discover an unusual protein playing a significant role in the Earth's nitrogen cycle.
Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
Quorn protein builds muscle better than milk protein
A study from the University of Exeter has found that mycoprotein, the protein-rich food source that is unique to Quorn products, stimulates post-exercise muscle building to a greater extent than milk protein.
More than a protein factory
Researchers from the Stowers Institute for Medical Research have discovered a new function of ribosomes in human cells that may show the protein-making particle's role in destroying healthy mRNAs, the messages that decode DNA into protein.
Put down the protein shake: Variety of protein better for health
University of Sydney researchers have examined whether there are any ongoing ramifications or potential side-effects from long-term high protein intake or from consuming certain types of amino acids.
Elucidating protein-protein interactions & designing small molecule inhibitors
To carry out wide range of cellular functionalities, proteins often associate with one or more proteins in a phenomenon known as Protein-Protein Interaction (PPI).
The protein with the starting gun
Whether dormant bacteria begin to reproduce is no accident. Rather, they are simply waiting for a clear signal from a single protein in the cell interior.
Protein moonlighting
A class of proteins involved in essential cell functions has an unexpected role, UCSB scientists discover.
More Protein News and Protein Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab