Nav: Home

Ancient defense strategy continues to protect plants from pathogens

July 11, 2019

Scientists at the University of Cambridge have uncovered striking similarities in how two distantly related plants defend themselves against pathogens despite splitting from their common ancestor more than 400 million years ago.

Researchers from the Sainsbury Laboratory at the University of Cambridge compared how two distantly related plants - a common liverwort (Marchantia polymorpha) and a flowering plant, wild tobacco (Nicotiana benthamiana) - defend themselves against an aggressive pathogen (Phytophthora palmivora). This is the first time such a comparison has been undertaken. By studying how these distantly related plants - which split from their common ancestor roughly 400 million years ago - respond to pathogen infections, the research team discovered a suite of microbe-responsive gene families that date back to early land plant evolution.

Our current understanding of how plants successfully defend against disease-causing pathogens mainly originates from studying economically important crop plants and a small number of closely-related flowering plant model systems. Very distantly-related plants, such as non-flowering liverworts that are believed to resemble some of the first land plants, are often overlooked. As a result, not much was known about how these plants defend themselves from pathogens or how plant defence strategies have evolved.

Published in Current Biology today, the identification of these evolutionarily conserved genes is shedding new light on the strategies that were likely critical for the expansion of plants onto land.

"We have shown that molecular responses to pathogen infection typical of modern flowering plants are common to very distantly-related land plants and may therefore be more ancient than we previously thought," says Dr Sebastian Schornack, who led the research team that undertook the study. "Despite fluctuating environmental pressures over a broad evolutionary timescale, these conserved genes have retained their capacity to confer pathogen protection in plants, including in important agricultural crops."

Bioinformatics expert, Dr Anna Gogleva, identified a subset of one-to-one corresponding genes (single-copy orthologs) in the liverwort and wild tobacco and analysed their level of activity during the infection. A number of different genes were activated in both plants, but a set of metabolic genes involved in phenylpropanoid (flavonoid) biosynthesis were highly activated in response to infection.

These gene families are often associated with the stress-response in flowering plants, providing increased protection against biotic or abiotic stresses caused by chewing insects, pathogens and nutrient or light stress. However, this was the first time that these genes had been functionally linked to pathogen defence strategies in liverworts.

"Pathogen zoospores germinate on the surface of liverworts and eventually colonise the liverwort tissues, but in some areas we saw an accumulation of a purple/red pigment in the liverwort tissues where the pathogen was rarely detected," says Dr Philip Carella, lead author of the study.

"We produced liverwort plants with mosaic pigment patterns - resembling military camouflage fatigues - that allowed us to compare pathogen resistance in pigmented and non-pigmented areas of the same plant and found the pigment provided some resistance to pathogen infection."

The enormous diversity of traits and species that we see in modern plants today speaks to the millions of years of evolution that enabled plants to survive in dynamic and contrasting environments across the globe.

"The conflict between organisms can be a very powerful selective pressure that guides their evolutionary trajectory," says Dr Schornack. "Genes involved in fighting specific pathogens can evolve rapidly - both in plants and animals. But we have also now found these broadly-conserved genes responding to pathogen infection in very distantly-related plants, which suggests that land plants have retained a likely ancient pathogen deterrence strategy that is much too useful to lose.

"Fossil evidence shows that plants have engaged in close-interactions with microbial life forms throughout their evolutionary history. Our research has uncovered a common set of pathogen-responsive genes shared in early-divergent land plants and more evolutionarily young flowering plants, which are all likely to have been critical for the expansion of plants onto land. Further comparative studies focusing on other distantly related land plants and their aquatic algal predecessors should reveal even more information about the evolution and role of these vital gene families."
-end-
Reference:

Philip Carella, Anna Gogleva, David John Hoey, Anthony John Bridgen, Sara Christina Stolze, Hirofumi Nakagami, and Sebastian Schornack. 'Conserved Biochemical Defenses Underpin Host Responses to Oomycete Infection in an Early-Divergent Land Plant Lineage.' Current Biology (2019). DOI: 10.1016/j.cub.2019.05.078

Acknowledgements

This work was funded by the Gatsby Charitable Foundation, the Royal Society, the BBSRC OpenPlant initiative, the Natural Environment Research Council (NERC; NE/N00941X/1), and a Natural Sciences and Engineering Research Council of Canada (NSERC) postdoctoral fellowship to Philip Carella. Proteomic work performed in the Nakagami lab was supported by the Max-Planck-Gesellschaft.

University of Cambridge

Related Pathogens Articles:

Inexpensive, portable detector identifies pathogens in minutes
Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs.
Outsmarting pathogens
A new influenza strain appears each flu season, rendering past vaccines ineffective.
Autonomous microtrap for pathogens
Antibiotics are more efficient when they can act on their target directly at the site of infestation, without dilution.
Acidic environment could boost power of harmful pathogens
New findings published in PLOS Pathogens suggest lower pH in the digestive tract may make some bacterial pathogens even more dangerous.
On the trail of pathogens in meat, eggs and raw milk
To make food even safer for humans, experts from scientific institutions, food regulatory authorities and the business community will discuss current developments and strategies at the 'Zoonoses and Food Safety' Symposium at the German Federal Institute for Risk Assessment (BfR) on 4 and 5 November 2019, in Berlin-Marienfelde.
Protozoans and pathogens make for an infectious mix
The new observation that strains of V. cholerae can be expelled into the environment after being ingested by protozoa, and that these bacteria are then primed for colonisation and infection in humans, could help explain why cholera is so persistent in aquatic environments.
Your energy-efficient washing machine could be harboring pathogens
For the first time ever, investigators have identified a washing machine as a reservoir of multidrug-resistant pathogens.
Picky pathogens help non-native tree species invade
Trees have many natural enemies, including pathogens that have evolved to attack certain tree species.
How plague pathogens trick the immune system
Yersinia have spread fear and terror, especially in the past, but today they have still not been completely eradicated.
Metabolomic profiling of antibody response to periodontal pathogens
At the 97th General Session & Exhibition of the International Association for Dental Research (IADR), held in conjunction with the 48th Annual Meeting of the American Association for Dental Research (AADR) and the 43rd Annual Meeting of the Canadian Association for Dental Research (CADR), Jaakko Leskela, University of Helsinki, Finland, gave an oral presentation on 'Metabolomic Profiling of Antibody Response to Periodontal Pathogens.'
More Pathogens News and Pathogens Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.