Nav: Home

Hubble discovers mysterious black hole disc

July 11, 2019

Astronomers using the NASA/ESA Hubble Space Telescope have observed an unexpected thin disc of material encircling a supermassive black hole at the heart of the spiral galaxy NGC 3147, located 130 million light-years away.

The presence of the black hole disc in such a low-luminosity active galaxy has astronomers surprised. Black holes in certain types of galaxies such as NGC 3147 are considered to be starving as there is insufficient gravitationally captured material to feed them regularly. It is therefore puzzling that there is a thin disc encircling a starving black hole that mimics the much larger discs found in extremely active galaxies.

Of particular interest, this disc of material circling the black hole offers a unique opportunity to test Albert Einstein's theories of relativity. The disc is so deeply embedded in the black hole's intense gravitational field that the light from the gas disc is altered, according to these theories, giving astronomers a unique peek at the dynamic processes close to a black hole.

"We've never seen the effects of both general and special relativity in visible light with this much clarity," said team member Marco Chiaberge of AURA for ESA, STScI and Johns Hopkins Univeristy.

The disc's material was measured by Hubble to be whirling around the black hole at more than 10% of the speed of light. At such extreme velocities, the gas appears to brighten as it travels toward Earth on one side, and dims as it speeds away from our planet on the other. This effect is known as relativistic beaming. Hubble's observations also show that the gas is embedded so deep in a gravitational well that light is struggling to escape, and therefore appears stretched to redder wavelengths. The black hole's mass is around 250 million times that of the Sun.

"This is an intriguing peek at a disc very close to a black hole, so close that the velocities and the intensity of the gravitational pull are affecting how we see the photons of light," explained the study's first author, Stefano Bianchi, of Università degli Studi Roma Tre in Italy.

In order to study the matter swirling deep inside this disc, the researchers used the Hubble Space Telescope Imaging Spectrograph (STIS) instrument. This diagnostic tool divides the light from an object into its many individual wavelengths to determine the object's speed, temperature, and other characteristics at very high precision. STIS was integral to effectively observing the low-luminosity region around the black hole, blocking out the galaxy's brilliant light.

The astronomers initially selected this galaxy to validate accepted models about lower-luminosity active galaxies: those with malnourished black holes. These models predict that discs of material should form when ample amounts of gas are trapped by a black hole's strong gravitational pull, subsequently emitting lots of light and producing a brilliant beacon called a quasar.

"The type of disc we see is a scaled-down quasar that we did not expect to exist," Bianchi explained. "It's the same type of disc we see in objects that are 1000 or even 100 000 times more luminous. The predictions of current models for very faint active galaxies clearly failed."

The team hopes to use Hubble to hunt for other very compact discs around low-luminosity black holes in similar active galaxies.
-end-
More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The team's paper will appear in the journal the Monthly Notices of the Royal Astronomical Society.

The international team of astronomers in this study consists of Stefano Bianchi (Universita` degli Studi Roma Tre, Italy), Robert Antonucci (University of California, Santa Barbara, USA), Alessandro Capetti (INAF - Osservatorio Astrofisico di Torino, Italy), Marco Chiaberge (Space Telescope Science Institute and Johns Hopkins University, Baltimore, USA), Ari Laor (Israel Institute of Technology, Israel), Loredana Bassani (INAF/IASF Bologna, Italy), Francisco J. Carrera (CSIC-Universidad de Cantabria, Spain), Fabio La Franca (Universita` degli Studi Roma Tre, Italy), Andrea Marinucci (Universita` degli Studi Roma Tre, Italy), Giorgio Matt1 (Universita` degli Studi Roma Tre, Italy), Riccardo Middei (Universita` degli Studi Roma Tre, Italy), Francesca Panessa (INAF Istituto di Astrofisica e Planetologia Spaziali, Italy).

Image credit: ESA/Hubble, M. Kornmesser

LinksContacts

Stefano Bianchi
Dipartimento di Matematica e Fisica, Universita` degli Studi Roma Tre
Rome, Italy
Email: bianchi@fis.uniroma3.it

Bethany Downer
ESA/Hubble, Public Information Officer
Garching, Germany
Email: bethany.downer@partner.eso.org

ESA/Hubble Information Centre

Related Black Hole Articles:

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
Philosophy: What exactly is a black hole?
What is a black hole? In an article that has just appeared in the journal Nature Astronomy, Ludwig-Maximilians-Universitaet (LMU) in Munich philosopher Erik Curiel shows that physicists use different definitions of the concept, depending on their own particular fields of interest.
More Black Hole News and Black Hole Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab