DNA analysis reveals cryptic underwater ecosystem engineers

July 11, 2019

They look like smears of pink bubblegum on the rocks off British Columbia's coast, indistinguishable from one another.

But a new DNA analysis of coralline algae led by UBC and Hakai Institute researchers has revealed a wealth of different species - a diversity that could hold the key to protecting critical underwater habitats like kelp forests.

"Corallines play really important roles in their ecosystem, from cementing coral reefs together to giving off scents that attract other species like sea urchins, abalone, corals, and kelps to the area," said Patrick T. Martone, a professor of botany at UBC who supervised the research. "Some coralline species are better at attracting organisms than others and respond to climate stressors like rising ocean temperatures in different ways. But they all look the same so it's hard to tell how changes to their environment are really impacting them."

Coralline algae appear to be among the only species to benefit from the loss of sea otters, an endangered species native to the North Pacific Ocean. When sea otters are lost, sea urchins bloom and mow down kelp forests, which provide important habitat for many marine organisms. The resulting "sea urchin barrens" are largely devoid of life, except for coralline algae which appear to thrive in the landscape.

"The fact that corallines do better in this environment would be an exception to our understanding of the impacts of losing 'keystone' species like sea otters, which typically result in an overall loss of biodiversity," said Martone.

In order to find out if corallines are really doing better in the absence of the furry creatures, the researchers surveyed the diversity of corallines in both sea urchin barrens and kelp forests. They counted how many individuals were present, took samples and sequenced the DNA back in the lab.

"What we found is that there are a lot of species down there," said Katharine Hind, lead author and former Hakai post-doctoral researcher. "And while some corallines do grow more abundantly in sea urchin barrens, we found more species and greater diversity in kelp forests."

The researchers also found that while coralline communities in the different kelp forest sites were similar to one another, they were different in the urchin barren sites, which were dominated by just a few species.

"So what we begin to see is actually a loss of coralline diversity, despite the apparent increase in abundance. This greater understanding changes our interpretation of the ecological pattern - a lesson that should be applied to cryptic species in other biological systems, like fungi, insects, or plants on land," said Hind. "It's possible we could be losing some kind of ecosystem function as a result of this loss of diversity."

The researchers hope to figure out what role each of the coralline species is playing next.

"We are seeing a decline in kelp forests along the coast as they are being replaced by these urchin-dominated barrens," said Martone. "We think corallines might hold the key to understanding the maintenance of urchin barrens- certain species that urchins prefer to settle on could result in a positive feedback to bring more urchins to the area. Conversely, corallines that kelp spores respond more positively to could help bring kelp forests back to stripped reefs."
-end-
The study was published in Proceeding of the National Academy of Sciences (PNAS).

University of British Columbia

Related Diversity Articles from Brightsurf:

More plant diversity, less pesticides
Increasing plant diversity enhances the natural control of insect herbivory in grasslands.

Insect diversity boosted by combination of crop diversity and semi-natural habitats
To enhance the number of beneficial insect species in agricultural land, preserving semi-natural habitats and promoting crop diversity are both needed, according to new research published in the British Ecological Society's Journal of Applied of Ecology.

Ethnolinguistic diversity slows down urban growth
Where various ethnic groups live together, cities grow at a slower rate.

Protecting scientific diversity
The COVID-19 pandemic means that scientists face great challenges because they have to reorient, interrupt or even cancel research and teaching.

Cultural diversity in chimpanzees
Termite fishing by chimpanzees was thought to occur in only two forms with one or multiple tools, from either above-ground or underground termite nests.

Bursts of diversity in the gut microbiota
The diversity of bacteria in the human gut is an important biomarker of health, influences multiple diseases, such as obesity and inflammatory bowel diseases and affects various treatments.

Underestimated chemical diversity
An international team of researchers has conducted a global review of all registered industrial chemicals: some 350,000 different substances are produced and traded around the world -- well in excess of the 100,000 reached in previous estimates.

New world map of fish genetic diversity
An international research team from ETH Zurich and French universities has studied genetic diversity among fish around the world for the first time.

Biological diversity as a factor of production
Can the biodiversity of ecosystems be considered a factor of production?

Fungal diversity and its relationship to the future of forests
Stanford researchers predict that climate change will reduce the diversity of symbiotic fungi that help trees grow.

Read More: Diversity News and Diversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.