Nav: Home

What happens when you explode a chemical bond?

July 11, 2019

On bright summer days, the sunlight all around us is breaking bad by breaking bonds. Chemical bonds.

Ultraviolet light shatters the links between atoms in the DNA of our skin cells, potentially causing cancer. UV light also breaks oxygen bonds, eventually creating ozone, and cleaves hydrogen off other molecules to leave behind free radicals that can damage tissue.

University of California, Berkeley, chemists using some of the shortest laser pulses available -- one quintillionth of a second -- have now been able to resolve the step-by-step process leading to the exploding of a chemical bond, essentially making a movie of the event. They can follow electrons indecisively bouncing around in various states in the molecule before the bond breaks, and the atoms go their separate ways.

The technique, reported last week in the journal Science, will help chemists understand and potentially manipulate chemical reactions stimulated by light, so-called photochemical reactions. Chemists and biologists, in particular, are interested in understanding how large molecules manage to absorb light energy without breaking any bonds, as happens when molecules in the eye absorb light, giving us vision, or molecules in plants absorb light for photosynthesis.

"Think about a molecule, rhodopsin, in the eye," said first author Yuki Kobayashi, a UC Berkeley doctoral student. "When light hits the retina, rhodopsin absorbs the visible light, and we can see things because rhodopsin's bond's conformation changes."

In fact, when the light energy is absorbed, a bond in rhodopsin twists, instead of breaks, triggering other reactions that result in the perception of light. The technique Kobayashi and his UC Berkeley colleagues, professors Stephen Leone and Daniel Neumark, developed could be used to study in detail how this light absorption leads to twisting after the molecule passes through an excited state called an avoided crossing or conical intersection.

To prevent the breaking of a bond in DNA, "you want to redirect the energy from dissociation to just being vibrationally hot. For rhodopsin, you want to redirect the energy from vibrating to a cis-trans isomerization, a twist," Kobayashi said. "These redirections of chemical reactions are happening ubiquitously around us, but we have not seen the actual moment of them before."

Fast laser pulses

Attosecond lasers -- an attosecond is a billionth of a billionth of a second -- have been around for about a decade and are used by scientists to probe very fast reactions. Since most chemical reactions occur rapidly, these fast-pulse lasers are key to "seeing" how the electrons that form the chemical bond behave when the bond breaks and/or reforms.

Leone, a professor of chemistry and of physics, is an experimentalist who also uses theoretical tools and is a pioneer in using attosecond lasers to probe chemical reactions. He has six of these X-ray and extreme ultraviolet (collectively, XUV) lasers in his UC Berkeley laboratory.

Working with one of the simplest of molecules, iodine monobromide (IBr) -- which is one iodine atom linked to one bromine atom -- the UC Berkeley team hit the molecules with an 8 femtosecond pulse of visible light to excite one of their outermost electrons, then probed them with attosecond laser pulses.

Pulsing the attosecond XUV laser at timed intervals of 1.5 femtosecond (a femtosecond is 1,000 attoseconds), much like using a strobe light, the researchers could detect the steps leading to the breakup of the molecules. The high-energy XUV laser was able to explore the excited energy states relative to the molecule's inner electrons, which normally do not participate in chemical reactions.

"You are kind of making a movie of the pathways of the electron when it approaches the crossing and the probability of it going along one path or along another," Leone said. "These tools we are developing allow you to look at solids, gases and liquids, but you need the shorter time scales (provided by an attosecond laser). Otherwise, you only see the beginning and the end, and you don't know what else happened in between."

The experiment showed clearly that the outer electrons of IBr, once excited, suddenly see a variety of states or places they could be and explore many of them before deciding which path to take. In this simple molecule, however, all paths lead to the electron settling on either iodine or bromine and the two atoms flying apart.

In larger molecules, which the team hopes soon to explore, excited electrons would have more choices, some where the energy goes into a twist, like with rhodopsin, or into molecular vibration without the molecules breaking apart.

"In biology, it turns out that evolution has selected things that are extremely effective at absorbing the energy and not breaking a bond," Leone said. "When something goes wrong in your chemistry is when you see diseases cropping up."
-end-
Other co-authors of the paper were Kristina Chang of UC Berkeley and Tao Zeng of Carleton University in Ottawa, Canada. Leone, the John R. Thomas Endowed Chair in Physical Chemistry, and Neumark, a UC Berkeley professor of chemistry, are also faculty scientists at Lawrence Berkeley National Laboratory.

University of California - Berkeley

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".