Nav: Home

Mad cow disease: A computational model reveals the mechanism of replication of prions

July 11, 2019

The study was carried out in the Dulbecco Telethon Laboratory of Prions & Amyloids at CIBIO, lead by Emiliano Biasini, University of Trento and involved the team led by Prof. Pietro Faccioli, a physicist from the same university and affiliated to the Italian National Institute of Nuclear Physics.

Prions are unusual infectious agents made by aberrantly folded forms of a physiological protein called the cellular prion protein, or PrPC. These pathogens are known to replicate in absence of genetic material by recruiting normal PrPC molecules at the surface of cells and forcing them to change conformation and become infectious themselves. The resulting accumulation of prion particles in the nervous system lies at the root of neurodegenerative conditions known as transmissible spongiform encephalopathies, including Creutzfeldt-Jakob disease, fatal familial insomnia and Gerstmann-Sträussler-Scheinker in human, but also a variety of other pathologies in mammals such as the famous mad cow disease, which in the nineties caused a large epidemics in UK and Europe and several cases of cross-species transmission to human caused by the ingestion of infected meat.

Even though we know the existence of prions since 1982, thanks to the work of Nobel Laureate Stanley Prusiner, direct information regarding the structure of these non-canonical infectious agents is still lacking» - says Emiliano Biasini, Assistant Telethon Scientist and Associate Professor at the Department CIBIO, University of Trento. «In fact, their insoluble and aggregated nature hampers the use of classical high resolution techniques for studying protein structures such as X-ray crystallography or nuclear magnetic resonance. However, such information is instrumental to rationally design drugs against these agents. In an attempt to fill this gap, we found unexpected help from a discipline usually considered far away from biology or chemistry, that is particles physics.

Telethon researchers revised previous models of prion structure and proposed a novel architecture consistent with recent experimental data. This new model allowed Pietro Faccioli's group to apply their innovative algorithms for the reliable prediction of protein conformational transitions to the prion replication mechanism «Cross-disciplinarity has been the key» - explains Giovanni Spagnolli, Ph.D. student at the Department CIBIO, University of Trento and first author of the paper. «Without the contribution of the colleagues from physics we would have never been able to afford the kind of calculation required to simulate such complex systems. For the first time we reconstructed a physically-plausible mechanism of prion replication, which now allow us to formulate new hypotheses and design new drug discovery schemes to tackle the neurodegenerative processes unleashed by these infectious agents.

The calculation algorithms that allowed the reconstruction of prion replication are derived from mathematical methods of theoretical physics, originally formulated to study phenomena of the subatomic world, such as the quantum tunneling effect. These mathematical methods have been adapted here to allow the simulation of complex biomolecular processes such as the folding and aggregation of proteins - says Pietro Faccioli, Associate Professor at the Department of Physics, University of Trento and affiliated to the Italian National Institute for Nuclear Physics.
The study has been supported by the Italian Telethon Foundation and included collaborators from the University of Santiago de Compostela (Spain) and the University of Alberta (Canada).

Università di Trento

Related Prions Articles:

Altering pH bumps prions out of danger zone
New research led by Michigan State University and published in the current issue of the Proceedings of the National Academy of Sciences, offers hope by showing how we might prevent prions from aggregating or growing into deadly diseases.
Provocative prions may protect yeast cells from stress
The notorious heritable protein particles known as prions could be features, not bugs, in cells' operating systems.
Gut cells are gatekeepers of infectious brain diseases, study finds
Fresh insights into infectious brain conditions help to explain why some people -- and animals -- are more at risk than others.
Prions can pass on beneficial traits, Stanford study finds
Prion proteins, best known as the agents of deadly brain disorders like mad cow disease, can help yeast survive hard times and pass the advantageous traits down to their offspring, according to a new study by researchers at the Stanford University School of Medicine.
Newly deciphered structure suggests how infectious prions replicate
Infectious prions or PrPSc -- misfolded versions of the normal cellular prion protein PrPC -- convert their normal counterparts into copies of themselves and thereby cause fatal disease.
How prions kill neurons: New culture system shows early toxicity to dendritic spines
Prion diseases are fatal and incurable neurodegenerative conditions of humans and animals.
Prions made in SISSA
At times, to understand something well, it is useful to rebuild it from scratch.
Why it's hard to make a bunny mad: Examining prion disease resistance in rabbits
Rabbits have long been considered immune to prion disease, but recently scientists have shown that they can -- under certain circumstances -- get transmissible spongiform encephalopathy (or TSE, the scientific term for the fatal brain disease caused by prions).
Brain infection study reveals how disease spreads from gut
Diagnosis of deadly brain conditions could be helped by new research that shows how infectious proteins that cause the disease spread.
UTHealth research: Grass plants can transport infectious prions
Grass plants can bind, uptake and transport infectious prions, according to researchers at The University of Texas Health Science Center at Houston.

Related Prions Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".