Area of brain linked to spatial awareness and planning also plays role in decision making

July 11, 2019

New research by neuroscientists at the University of Chicago shows that the posterior parietal cortex (PPC), an area of the brain often associated with planning movements and spatial awareness, also plays a crucial role in making decisions about images in the field of view.

"Traditionally this part of the brain has been thought to be involved in controlling spatial attention and planning actions. There has been less attention paid to how much of a role this brain area plays in processing the visual stimuli themselves," said David Freedman, PhD, professor of neuroscience at UChicago and the senior author of the study, published this week in Science. "Here we were able to show that it plays an important role in making sense of the things we see, perhaps even more so than its role in planning your next action or directing your attention."

Freedman and Yang Zhou, PhD, a postdoctoral researcher, trained monkeys to play a simple computer game in which they reported their decisions about different types of images displayed on a computer monitor by moving their eyes toward a designated target. For example, if the animals were shown a pattern of dots moving up and to the left, they were supposed to move their eyes toward a green spot. If the dots were moving to the opposite direction, they should move their eyes toward a red spot.

For the new study, the researchers tested whether a specific region of the PPC called the lateral intraparietal area (LIP) was directly involved in guiding these decisions. They gave the animals a drug which temporarily halted neural activity in the LIP area, then they had the monkeys perform the same tasks. While the drug was active, the monkeys' decisions about the visual patterns they viewed were impaired; once the drug wore off, their decisions returned to normal.

The researchers also recorded activity in the same pool of neurons once the drug had worn off and found that activity in that area of the brain was indeed strongly correlated with the same kinds of decisions which had been impaired during the experiments.

Deeper understanding of how the brain interprets things we see

The findings provide new context to help understand why a 2016 study by another group in Nature reported that deactivating parts of LIP seemed not to have any impact on decision making. That study only examined LIP's role in motor planning--such as the decision about whether to look leftwards or rightwards. In contrast, the current study shows that LIP is more involved in making sense of the visual images that the subjects are viewing, rather than deciding which actions they should take next.

"All the neuronal data we examined in our past experiments gave us the impression that this area of the brain was involved in processing the meaning of visual images during decision making," Freedman said. "Now we find that indeed, when we temporarily shut the activity down in that part of the brain it really does affect the sensory parts of decisions."

Freedman says the new study provides an opportunity for neuroscientists to rethink the brain mechanisms involved in decision-making, visual categorization, and sensory and motor processing. The work could also lead to a deeper understanding of how the brain interprets the things we see in order to make decisions. Understanding this process in detail will be critical for developing new treatments for brain-based diseases and disorders which affect decision making.

"These results show that the brain's parietal cortex is an important hub for guiding decisions, so now we're even more motivated to move ahead and try to work out the details of neural circuits in this part of the brain that actually carry out these cognitive functions," he said.
-end-


University of Chicago Medical Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.